Patents by Inventor Ryoko Konta

Ryoko Konta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9136541
    Abstract: Provided is a process for producing a fuel cell electrode catalyst having high catalytic activity which uses a transition metal, e.g., titanium, which process comprises thermal treatment at relatively low temperature, i.e., not including thermal treatment at high temperature (calcining) step. The process for producing a fuel cell electrode catalyst comprises a step (1) of mixing at least a transition metal-containing compound, a nitrogen-containing organic compound and a solvent to provide a catalyst precursor solution; a step (2) of removing the solvent from the catalyst precursor solution; and a step (3) of thermally treating a solid residue obtained in the step (2) at a temperature of 500 to 1100° C. to provide an electrode catalyst; wherein the transition metal-containing compound is partly or wholly a compound comprising at least one transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: September 15, 2015
    Assignee: SHOWA DENKO K.K.
    Inventors: Kunchan Lee, Ryoko Konta, Masaki Horikita, Chunfu Yu, Yasuaki Wakizaka, Kenichiro Ota, Ryuji Monden, Kazunori Ichioka, Takashi Sato, Takuya Imai
  • Patent number: 9083051
    Abstract: Provided is a process for producing a fuel cell electrode catalyst having high catalytic activity which uses a transition metal, e.g., titanium, which process comprises thermal treatment at relatively low temperature, i.e., not including thermal treatment at high temperature (calcining) step. The process for producing a fuel cell electrode catalyst comprises a step (1) of mixing at least a transition metal-containing compound, a nitrogen-containing organic compound and a solvent to provide a catalyst precursor solution; a step (2) of removing the solvent from the catalyst precursor solution; and a step (3) of thermally treating a solid residue obtained in the step (2) at a temperature of 500 to 1100° C. to provide an electrode catalyst; wherein the transition metal-containing compound is partly or wholly a compound comprising at least one transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 14, 2015
    Assignee: SHOWA DENKO K.K.
    Inventors: Kunchan Lee, Ryoko Konta, Masaki Horikita, Chunfu Yu, Yasuaki Wakizaka, Kenichiro Ota, Ryuji Monden, Kazunori Ichioka, Takashi Sato, Takuya Imai
  • Patent number: 8802187
    Abstract: The present invention provides a method of manufacturing a solar cell, comprising forming a buffer layer comprising a group-III nitride semiconductor on a substrate using a sputtering method, and forming a group-III nitride semiconductor layer and electrodes on the buffer layer. The group-III nitride semiconductor layer is formed on the buffer layer by at least one selected from the group consisting of the sputtering method, a MOCVD method, an MBE method, a CBE method, and an MLE method, and the electrodes are formed on the group-III nitride semiconductor layer.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: August 12, 2014
    Assignee: Showa Denko K.K.
    Inventors: Yoshiaki Ikenoue, Hisayuki Miki, Kenzo Hanawa, Yasumasa Sasaki, Hitoshi Yokouchi, Ryoko Konta, Hiroaki Kaji
  • Publication number: 20120315568
    Abstract: Provided is a process for producing a fuel cell electrode catalyst having high catalytic activity which uses a transition metal, e.g., titanium, which process comprises thermal treatment at relatively low temperature, i.e., not including thermal treatment at high temperature (calcining) step. The process for producing a fuel cell electrode catalyst comprises a step (1) of mixing at least a transition metal-containing compound, a nitrogen-containing organic compound and a solvent to provide a catalyst precursor solution; a step (2) of removing the solvent from the catalyst precursor solution; and a step (3) of thermally treating a solid residue obtained in the step (2) at a temperature of 500 to 1100° C. to provide an electrode catalyst; wherein the transition metal-containing compound is partly or wholly a compound comprising at least one transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element.
    Type: Application
    Filed: February 9, 2011
    Publication date: December 13, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Kunchan Lee, Ryoko Konta, Masaki Horikita, Chunfu Yu, Yasuaki Wakizaka, Kenichiro Ota, Ryuji Monden, Kazunori Ichioka, Takashi Sato, Takuya Imai
  • Publication number: 20100261308
    Abstract: The present invention provides a method of manufacturing a solar cell, comprising forming a buffer layer comprising a group-III nitride semiconductor on a substrate using a sputtering method, and forming a group-III nitride semiconductor layer and electrodes on the buffer layer. The group-III nitride semiconductor layer is formed on the buffer layer by at least one selected from the group consisting of the sputtering method, a MOCVD method, an MBE method, a CBE method, and an MLE method, and the electrodes are formed on the group-III nitride semiconductor layer.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Yoshiaki IKENOUE, Hisayuki Miki, Kenzo Hanawa, Yasumasa Sasaki, Hitoshi Yokouchi, Ryoko Konta, Hiroaki Kaji
  • Publication number: 20090205707
    Abstract: The object of the present invention is to provide a solar cell which is industrially beneficial and has high light conversion efficiency; and a method for producing a solar cell; and the present invention provides a solar cell comprising a substrate, a power generation layer for converting received light into electrical power, a translucent electrode, and another electrode, when light travels through each member from a first surface thereof, a surface opposite to the first surface is defined as a second surface, the power generation layer is formed at a second surface side of the substrate, the translucent electrode is formed on one surface of the power generation layer, and another electrode is formed on the other surface of the power generation layer, wherein the translucent electrode comprises hexagonal In2O3 crystal.
    Type: Application
    Filed: February 18, 2009
    Publication date: August 20, 2009
    Applicant: SHOWA DENKO K.K.
    Inventors: Yoshiaki IKENOUE, Naoki Fukunaga, Hironao Shinohara, Hisayuki Miki, Kenzo Hanawa, Hiroaki Kaji, Hitoshi Yokouchi, Ryoko Konta
  • Publication number: 20080223434
    Abstract: The present invention provides a solar cell that is useful for industry and has high photoelectric conversion efficiency and a method of manufacturing the same. A solar cell according to an aspect of the invention includes: a substrate; a buffer layer that is formed on the substrate and is composed of a group-III nitride semiconductor; and a group-III nitride semiconductor layer (p-type layer/an n-type layer) that has a p-n junction therein and is formed on the buffer layer. At least one of the buffer layer and the group-III nitride semiconductor layer having the p-n junction therein has a compound semiconductor layer formed by a sputtering method.
    Type: Application
    Filed: February 19, 2008
    Publication date: September 18, 2008
    Applicant: SHOWA DENKO K.K.
    Inventors: Yoshiaki Ikenoue, Hisayuki Miki, Kenzo Hanawa, Yasumasa Sasaki, Hitoshi Yokouchi, Ryoko Konta, Hiroaki Kaji