Patents by Inventor Ryoko ORISHIMO

Ryoko ORISHIMO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10988751
    Abstract: A method enables olefin compound production with a high productivity, and an enzyme is used in the method. Mutations involving amino acid substitution are introduced into various sites of diphosphomevalonate decarboxylase (MVD) to prepare multiple MVD variants. Then, these variants are evaluated in terms of catalytic activity for producing an olefin compound such as isoprene, and have found as a result that the catalytic activity is improved when serine at position 153 and threonine at position 209 are each substituted with a different amino acid. In addition, the catalytic activity of the variants is further improved when glycine at position 152 is further substituted with a different amino acid.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: April 27, 2021
    Assignees: RIKEN, ZEON CORPORATION, THE YOKOHAMA RUBBER CO., LTD.
    Inventors: Ryoko Orishimo, Tomokazu Shirai, Kazuhiro Takahashi, Misao Hiza, Yusuke Tanabe
  • Patent number: 10961548
    Abstract: Mutations involving amino acid substitution were introduced into various sites of diphosphomevalonate decarboxylase (MVD), thus preparing a large number of MVD variants. Then, the variants were each evaluated in terms of a catalytic activity for production of olefin compounds such as isoprene. As a result, it was found that substitution of glycine at position with a different amino acid resulted in improvement in the catalytic activity. In addition, it was found that the MVD in which arginine at position and threonine at position in addition to the position were further substituted with different amino acids, respectively, also had the high catalytic activity.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: March 30, 2021
    Assignees: RIKEN, ZEON CORPORATION, THE YOKOHAMA RUBBER CO., LTD.
    Inventors: Ryoko Orishimo, Tomokazu Shirai, Kazuhiro Takahashi, Misao Hiza, Yusuke Tanabe
  • Patent number: 10781460
    Abstract: A method which enables olefin compound production with a high productivity and an enzyme used in the method, a mutation involving amino acid substitution has been introduced into various sites of diphosphomevalonate decarboxylase (MVD), thus preparing a large number of MVD variants. Next, the result of evaluating the variants for the catalytic activity related to the production of olefin compounds such as isoprene has revealed that MVD whose threonine at position 209 is substituted with a different amino acid has the catalytic activity, and that MVD whose arginine at position 74 is further substituted with a different amino acid in addition to position 209 has the catalytic activity at higher levels.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: September 22, 2020
    Assignees: RIKEN, ZEON CORPORATION, THE YOKOHAMA RUBBER CO., LTD.
    Inventors: Ryoko Orishimo, Tomokazu Shirai, Kazuhiro Takahashi, Misao Hiza, Yusuke Tanabe
  • Publication number: 20190345476
    Abstract: A method enables olefin compound production with a high productivity, and an enzyme is used in the method. Mutations involving amino acid substitution are introduced into various sites of diphosphomevalonate decarboxylase (MVD) to prepare multiple MVD variants. Then, these variants are evaluated in terms of catalytic activity for producing an olefin compound such as isoprene, and have found as a result that the catalytic activity is improved when serine at position 153 and threonine at position 209 are each substituted with a different amino acid. In addition, the catalytic activity of the variants is further improved when glycine at position 152 is further substituted with a different amino acid.
    Type: Application
    Filed: January 30, 2018
    Publication date: November 14, 2019
    Applicants: RIKEN, ZEON CORPORATION, The Yokohama Rubber Co., Ltd.
    Inventors: Ryoko ORISHIMO, Tomokazu SHIRAI, Kazuhiro TAKAHASHI, Misao HIZA, Yusuke TANABE
  • Publication number: 20190264237
    Abstract: Mutations involving amino acid substitution were introduced into various sites of diphosphomevalonate decarboxylase (MVD), thus preparing a large number of MVD variants. Then, the variants were each evaluated in terms of a catalytic activity for production of olefin compounds such as isoprene. As a result, it was found that substitution of glycine at position with a different amino acid resulted in improvement in the catalytic activity. In addition, it was found that the MVD in which arginine at position and threonine at position in addition to the position were further substituted with different amino acids, respectively, also had the high catalytic activity.
    Type: Application
    Filed: September 26, 2017
    Publication date: August 29, 2019
    Applicants: RIKEN, ZEON CORPORATION, THE YOKOHAMA RUBBER CO., LTD.
    Inventors: Ryoko ORISHIMO, Tomokazu SHIRAI, Kazuhiro TAKAHASHI, Misao HIZA, Yusuke TANABE
  • Publication number: 20180245104
    Abstract: A method which enables olefin compound production with a high productivity and an enzyme used in the method, a mutation involving amino acid substitution has been introduced into various sites of diphosphomevalonate decarboxylase (MVD), thus preparing a large number of MVD variants. Next, the result of evaluating the variants for the catalytic activity related to the production of olefin compounds such as isoprene has revealed that MVD whose threonine at position 209 is substituted with a different amino acid has the catalytic activity, and that MVD whose arginine at position 74 is further substituted with a different amino acid in addition to position 209 has the catalytic activity at higher levels.
    Type: Application
    Filed: August 3, 2016
    Publication date: August 30, 2018
    Applicants: RIKEN, ZEON CORPORATION, The Yokohama Rubber Co., Ltd.
    Inventors: Ryoko ORISHIMO, Tomokazu SHIRAI, Kazuhiro TAKAHASHI, Misao HIZA, Yusuke TANABE