Patents by Inventor Ryosuke Kainuma

Ryosuke Kainuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959161
    Abstract: A copper-based alloy material including a multiphase structure containing a matrix of a ? phase and a precipitation phase of a B2-type crystal structure dispersed in the matrix, where the copper-based alloy material includes a composition containing 8.6 to 12.6% by mass of Al, 2.9 to 8.9% by mass of Mn, 3.2 to 10.0% by mass of Ni, and Cu.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: April 16, 2024
    Assignees: FURUKAWA TECHNO MATERIAL CO., LTD., TOHOKU UNIVERSITY, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Sumio Kise, Fumiyoshi Yamashita, Misato Fujii, Koji Ishikawa, Ryosuke Kainuma, Toshihiro Omori, Nobuyasu Matsumoto
  • Publication number: 20220415547
    Abstract: A permanent magnet alloy according to the present disclosure contains Mn at a content not lower than 41% by atom and not higher than 53% by atom; Al at a content not lower than 46% by atom and not higher than 53% by atom; and Cu at a content not lower than 0.5% by atom and not higher than 10% by atom. The alloy contains a stable phase, having a tetragonal structure, at a ratio not lower than 50%.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 29, 2022
    Inventors: Ryosuke KAINUMA, Toshihiro OMORI, Xiao XU, Naoki HASHIMOTO, Tomohito MAKI
  • Publication number: 20210317557
    Abstract: The present invention provides a highly fracture resistant, fatigue resistant copper-based alloy material and the like for which, for example, even when the material is subjected to repeated deformation consisting of loading of stress for applying a shape-memory alloy-specific strain and unloading of same followed return to the original shape, the alloy material is not susceptible to persistence of such strain. This copper-based alloy material has a multiphase structure in which a B2-type crystal structure precipitated phase is dispersed in a ?-phase-comprising matrix.
    Type: Application
    Filed: August 30, 2019
    Publication date: October 14, 2021
    Applicants: FURUKAWA TECHNO MATERIAL CO., LTD., TOHOKU UNIVERSITY, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Sumio KISE, Fumiyoshi YAMASHITA, Misato FUJII, Koji ISHIKAWA, Ryosuke KAINUMA, Toshihiro OMORI, Nobuyasu MATSUMOTO
  • Patent number: 11118255
    Abstract: A Cu—Al—Mn-based alloy material (1) having a composition comprising: given contents of Al and Mn, and a given total content of at least one selected from Ni and the like; with the balance being Cu and unavoidable impurities, wherein the alloy material has a shape elongated in the working direction (RD), wherein a grain length ax in the RD is R/2 or less to the width or diameter (R), a grain length bx in a direction perpendicular to the RD is R/4 or less, and the amount of grains X (2) is 15% or less, and wherein a grain length a in the RD and a grain length b in the direction perpendicular to the RD satisfy: a?b, and an angle formed by the normal line of the (111) plane and the RD is 15° or larger, the amount of grains Y? (3) is 85% or more.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: September 14, 2021
    Assignees: FURUKAWA ELECTRIC CO., LTD., FURUKAWA TECHNO MATERIAL CO., LTD., TOHOKU UNIVERSITY
    Inventors: Misato Fujii, Sumio Kise, Toyonobu Tanaka, Kenji Nakamizo, Koji Ishikawa, Toshihiro Omori, Ryosuke Kainuma
  • Patent number: 10920305
    Abstract: A Fe-based shape memory alloy material, containing 25 atom % to 42 atom % of Mn, 9 atom % to 13 atom % of Al, 5 atom % to 12 atom % of Ni, and 5.1 atom % to 15 atom % of Cr, with the balance being Fe and unavoidable impurities; a method of producing the same; and a wire material and sheet material composed of the alloy material.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: February 16, 2021
    Assignees: TOHOKU UNIVERSITY, FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD.
    Inventors: Toshihiro Omori, Ryosuke Kainuma, Yuki Noguchi, Sumio Kise, Toyonobu Tanaka
  • Patent number: 10400311
    Abstract: A wrought material containing a Cu—Al—Mn-based alloy, in which an existence frequency of a coincidence grain boundary with a ? value of 3 or less is 35% or more but 75% or less, and which has a recrystallized microstructure substantially formed from a ? single phase; and the use thereof.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: September 3, 2019
    Assignees: FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD., TOHOKU UNIVERSITY
    Inventors: Sumio Kise, Toyonobu Tanaka, Kenji Nakamizo, Koji Ishikawa, Misato Fujii, Toshihiro Omori, Ryosuke Kainuma
  • Patent number: 10351939
    Abstract: A Cu—Al—Mn-based alloy having superelastic characteristics and having a recrystallized texture substantially formed of a ? single phase, in which 70% or more of crystal grains is within a range of 0° to 50° in a deviation angle from <001> orientation of a crystalline orientation measured in a working direction by electron back-scatter diffraction patterning.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: July 16, 2019
    Assignees: TOHOKU UNIVERSITY, FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD.
    Inventors: Toshihiro Omori, Shingo Kawata, Ryosuke Kainuma, Kiyohito Ishida, Toyonobu Tanaka, Kenji Nakamizo, Sumio Kise, Koji Ishikawa, Misato Nakano, Satoshi Teshigawara
  • Publication number: 20190153571
    Abstract: A Fe-based shape memory alloy material, containing 25 atom % to 42 atom % of Mn, 9 atom % to 13 atom % of Al, 5 atom % to 12 atom % of Ni, and 5.1 atom % to 15 atom % of Cr, with the balance being Fe and unavoidable impurities; a method of producing the same; and a wire material and sheet material composed of the alloy material.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Applicants: TOHOKU UNIVERSITY, FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD.
    Inventors: Toshihiro OMORI, Ryosuke KAINUMA, Yuki NOGUCHI, Sumio KISE, Toyonobu TANAKA
  • Publication number: 20190133803
    Abstract: A hallux valgus correction device (1) for correcting hallux valgus, the hallux valgus correction device including: a corrector (10) made of a superelastic alloy; and a fixture (2, 3, and 4) formed from a fabric to attach the corrector, in which the corrector has a hinge part (11) that is rotationally movable in the bending direction and the stretching direction of one toe or a plurality of toes in need of correction.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Applicants: FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD., Tohoku University
    Inventors: Sumio KISE, Toyonobu TANAKA, Ryosuke KAINUMA, Toshihiro OMORI, Masahito HATORI, Tadakuni KAMEDA, Norihito SUZUKI
  • Patent number: 9617622
    Abstract: A hydrogen gas generating member includes a metal alloy having dispersed aluminum. The metal alloy includes an Al—X alloy, where X is Sn: 10.1 to 99.5% by mass, Bi: 30.1 to 99.5% by mass, In: 10.1 to 99.5% by mass, Sn +Bi: 20.1 to 99.5% by mass, Sn +In: to 10 to 99.5% by mass, Bi+In: 20.1 to 99.5% by mass, or Sn+Bi+In: 20 to 99.5% by mass. Hydrogen gas is generated by bringing the hydrogen gas generating member into contact with water.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: April 11, 2017
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Yoshikazu Takaku, Takehito Hagisawa
  • Publication number: 20160376688
    Abstract: A Cu—Al—Mn-based alloy material (1) having a composition comprising: given contents of Al and Mn, and a given total content of at least one selected from Ni and the like; with the balance being Cu and unavoidable impurities, wherein the alloy material has a shape elongated in the working direction (RD), wherein a grain length ax in the RD is R/2 or less to the width or diameter (R), a grain length bx in a direction perpendicular to the RD is R/4 or less, and the amount of grains X (2) is 15% or less, and wherein a grain length a in the RD and a grain length b in the direction perpendicular to the RD satisfy: a?b, and an angle formed by the normal line of the (111) plane and the RD is 15° or larger, the amount of grains Y? (3) is 85% or more.
    Type: Application
    Filed: September 13, 2016
    Publication date: December 29, 2016
    Applicants: FURUKAWA ELECTRIC CO., LTD., FURUKAWA TECHNO MATERIAL CO., LTD., Tohoku University
    Inventors: Misato FUJII, Sumio KISE, Toyonobu TANAKA, Kenji NAKAMIZO, Koji ISHIKAWA, Toshihiro OMORI, Ryosuke KAINUMA
  • Patent number: 9453274
    Abstract: A process for producing a Co-base alloy which has a basic composition including, in terms of mass proportion, 0.1%-10% Al, 3.0-45% W, and Co as the remainder and has an intermetallic compound of the L12 type [Co3 (Al,W)] dispersed and precipitated therein. Part of the Co may be replaced with Ni, Ir, Fe, Cr, Re, or Ru, while part of the Al and W may be replaced with Ni, Ti, Nb, Zr, V, Ta or Hf. The intermetallic compound [Co3 (Al, W)] has a high melting point, and this compound and the matrix are mismatched little with respect to lattice constant. Thus, the cobalt-base alloy can have high-temperature strength equal to that of nickel-base alloys and excellent structure stability.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: September 27, 2016
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Katunari Oikawa, Ikuo Ohnuma, Jun Sato
  • Publication number: 20160130683
    Abstract: A wrought material containing a Cu—Al—Mn-based alloy, in which an existence frequency of a coincidence grain boundary with a ? value of 3 or less is 35% or more but 75% or less, and which has a recrystallized microstructure substantially formed from a ? single phase; and the use thereof.
    Type: Application
    Filed: January 15, 2016
    Publication date: May 12, 2016
    Applicants: FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD., Tohoku University
    Inventors: Sumio KISE, Toyonobu TANAKA, Kenji NAKAMIZO, Koji ISHIKAWA, Misato FUJII, Toshihiro OMORI, Ryosuke KAINUMA
  • Publication number: 20160060740
    Abstract: A Cu—Al—Mn-based alloy rod having superelastic characteristics and having a recrystallized microstructure substantially formed of a ? single phase, wherein, for a longitudinal direction cross section of the rod, a region, in which a grain size of each of grains is a radius of the rod or more, is 90% or more of the longitudinal direction cross section at any location of the rod, and wherein an average grain size of the grains, in which the grain size is the radius of the rod or more, is 80% or more of a diameter of the rod; a Cu—Al—Mn-based alloy sheet; a production method thereof; a vibration damping material using thereof; a vibration damping structure constructed by using the vibration damping material.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 3, 2016
    Applicants: TOHOKU UNIVERSITY, FURUKAWA ELECTRIC CO., LTD., FURUKAWA TECHNO MATERIAL CO., LTD.
    Inventors: Toshihiro OMORI, Tomoe KUSAMA, Ryosuke KAINUMA, Kiyohito ISHIDA, Toyonobu TANAKA, Sumio KISE, Kenji NAKAMIZO, Koji ISHIKAWA, Misato FUJII, Satoshi TESHIGAWARA
  • Publication number: 20150225826
    Abstract: A Cu—Al—Mn-based alloy having superelastic characteristics and having a recrystallized texture substantially formed of a ? single phase, in which 70% or more of crystal grains is within a range of 0° to 50° in a deviation angle from <001> orientation of a crystalline orientation measured in a working direction by electron back-scatter diffraction patterning.
    Type: Application
    Filed: March 16, 2015
    Publication date: August 13, 2015
    Applicants: TOHOKU UNIVERSITY, FURUKAWA ELECTRIC CO., LTD, FURUKAWA TECHNO MATERIAL CO., LTD.
    Inventors: Toshihiro OMORI, Shingo KAWATA, Ryosuke KAINUMA, Kiyohito ISHIDA, Toyonobu TANAKA, Kenji NAKAMIZO, Sumio KISE, Koji ISHIKAWA, Misato NAKANO, Satoshi TESHIGAWARA
  • Patent number: 8815027
    Abstract: An Fe-based shape memory alloy comprising 25-42 atomic % of Mn, 12-18 atomic % of Al, and 5-12 atomic % of Ni, the balance being Fe and inevitable impurities, and an Fe-based shape memory alloy comprising 25-42 atomic % of Mn, 12-18 atomic % of Al, and 5-12 atomic % of Ni, as well as 15 atomic % or less in total of at least one selected from the group consisting of 0.1-5 atomic % of Si, 0.1-5 atomic % of Ti, 0.1-5 atomic % of V, 0.1-5 atomic % of Cr, 0.1-5 atomic % of Co, 0.1-5 atomic % of Cu, 0.1-5 atomic % of Mo, 0.1-5 atomic % of W, 0.001-1 atomic % of B and 0.001-1 atomic % of C, the balance being Fe and inevitable impurities.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: August 26, 2014
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Keisuke Ando
  • Publication number: 20140007995
    Abstract: A process for producing a Co-base alloy which has a basic composition including, in terms of mass proportion, 0.1%-10% Al, 3.0-45% W, and Co as the remainder and has an intermetallic compound of the L12 type [Co3 (Al, W)] dispersed and precipitated therein. Part of the Co may be replaced with Ni, Ir, Fe, Cr, Re, or Ru, while part of the Al and W may be replaced with Ni, Ti, Nb, Zr, V, Ta or Hf. The intermetallic compound [Co3 (Al, W)] has a high melting point, and this compound and the matrix are mismatched little with respect to lattice constant. Thus, the cobalt-base alloy can have high-temperature strength equal to that of nickel-base alloys and excellent structure stability.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 9, 2014
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Katunari Oikawa, Ikuo Ohnuma, Jun Sato
  • Patent number: 8568470
    Abstract: A guide wire includes a distal core member made of a ferrous alloy which has shape memory properties and superelasticity. The ferrous alloy preferably includes substantially two phases, and has a difference of 100° C. or less between an Af point and an Ms point in a thermal hysteresis of martensitic transformation and reverse transformation. The guide wire may include a proximal core member made of an iron-containing alloy and having a higher modulus of elasticity than the distal core member. The two core members may be joined together by welding to form a core of the guide wire.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 29, 2013
    Assignees: Japan Science and Technology Agency, Terumo Kabushiki Kaisha
    Inventors: Kiyohito Ishida, Kiyoshi Yamauchi, Ryosuke Kainuma, Yuji Sutou, Toshihiro Omori, Yuuki Tanaka, Hiraku Murayama, Ryouichi Souba
  • Patent number: 8551265
    Abstract: A Co-base alloy which has a basic composition including, in terms of mass proportion, 0.1%-10% Al, 3.0-45% W, and Co as the remainder and has an intermetallic compound of the Ll2 type [Co3(Al,W)] dispersed and precipitated therein. Part of the Co may be replaced with Ni, Ir, Fe, Cr, Re, or Ru, while part of the Al and W may be replaced with Ni, Ti, Nb, Zr, V, Ta or Hf. The intermetallic compound [Co3(Al, W)] has a high melting point, and this compound and the matrix are mismatched little with respect to lattice constant. Thus, the cobalt-base alloy can have high-temperature strength equal to that of nickel-base alloys and excellent structure stability.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: October 8, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Katunari Oikawa, Ikuo Ohnuma, Jun Sato
  • Patent number: 8529710
    Abstract: A Co-based alloy being useful as a spiral spring, common spring, wire, cable guide, steel belt, build-up material, guide wire, stent, catheter, etc. There is provided a Co-based alloy having a composition of Co—Al binary system containing 3-13% Al loaded with at least one workability enhancing element selected from among 001 to 50% Ni, 0.01 to 40% Fe and 0.01 to 30% Mn and having a lamellar structure wherein f.c.c. structure ?-phase and ?(B2)-phase are repeated in layers. The lamellar structure is so regulated that the occupancy ratio of the whole structure is 30 vol. % or above and the layer spacing is 100 ?m or less. The Co-based alloy may contain at least one optional component selected from among Ga, Cr, V, Ti, Mo, Nb, Zr, W, Ta, Hf, Si, Rh, Pd, Ir, Pt, Au, B, C and P may be added in a total amount of 0.01 to 60%.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: September 10, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Kiyoshi Yamauchi, Ryosuke Kainuma, Yuji Sutou, Toshihiro Omori