Patents by Inventor Ryosuke Maekawa

Ryosuke Maekawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220200014
    Abstract: One aspect of the present disclosure relates to a method of producing a gas diffusion layer including a water repellent material dispersion preparation process in which a water repellent material, a viscosity adjusting agent and a solvent are mixed to obtain a water repellent material dispersion; an impregnation process in which a substrate is impregnated with the water repellent material dispersion; and a firing process in which the substrate impregnated with the water repellent material dispersion is fired, wherein the viscosity of the water repellent material dispersion in the water repellent material dispersion preparation process is 0.04 Pa·s@100 s?1 or more.
    Type: Application
    Filed: November 15, 2021
    Publication date: June 23, 2022
    Inventors: Toyohiro SONE, Ryosuke MAEKAWA
  • Publication number: 20170175232
    Abstract: A thermal insulation material containing an Al—Cu—Fe-based alloy, wherein at least part of the Al—Cu—Fe-based alloy comprises a quasicrystalline phase, wherein the Al—Cu—Fe-based alloy contains one or more transition elements selected from the group of Ru, Rh, Pd, Ag, Os, Jr, Pt, and Au, and wherein the total of the transition elements is from 0.25 to 0.75 atom % when the whole of the Al—Cu—Fe-based alloy is 100 atom %.
    Type: Application
    Filed: December 1, 2016
    Publication date: June 22, 2017
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, Toyota School Foundation
    Inventors: Taizo YOSHINAGA, Ryosuke MAEKAWA, Yohei KINOSHITA, Takeo YAMAGUCHI, Hideo YAMASHITA, Tsunehiro TAKEUCHI
  • Publication number: 20160245450
    Abstract: It should be noted that when hollow nanosilica in an amount not less than a predetermined amount is incorporated into an AlCuFe-based quasicrystalline alloy, a heat conductivity lower than the heat conductivity predictable from the mixing ratio of the AlCuFe-based quasicrystalline alloy and the hollow nanosilica is obtained, a heat insulating material including an AlCuFe-based quasicrystalline alloy having mixed therein 17 mass % or more of hollow nanosilica is produced, wherein the heat insulating property is more enhanced.
    Type: Application
    Filed: February 23, 2016
    Publication date: August 25, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Taizo YOSHINAGA, Ryosuke MAEKAWA
  • Publication number: 20150171257
    Abstract: An object of the present invention is to provide a method for manufacturing a semiconductor film capable of manufacturing a ZnMgO film in which the adding amount of Mg to Zn is more than 20 mol %, by means of a liquid phase deposition method. The present invention is a method for manufacturing a semiconductor film including a first step of preparing a mixture liquid including zinc hydroxide, magnesium hydroxide, and a liquid, a second step of applying a member to be film-deposited to the mixed liquid, and a third step of heating the member to be film-deposited to which the mixed liquid is applied, having a temperature range from 300° C. to 400° C. for 100/30 minutes or less.
    Type: Application
    Filed: April 11, 2013
    Publication date: June 18, 2015
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryosuke Maekawa, Hiroki Awano, Tomoya Matsunaga, Yuichiro Takeda, Takenobu Sakai, Yuya Kusano
  • Publication number: 20140332080
    Abstract: A main object of the present invention is to provide a CZTS-based compound semiconductor whose band gap is different from that of a conventional CZTS-based compound semiconductor and a photoelectric conversion device prepared with the CZTS-based compound semiconductor. The present invention is a CZTS-based compound semiconductor in which a ratio of the number of moles of Cu to the total number of moles of Cu, Zn and Sn is larger than a ratio of the number of moles of Cu to the total number of moles of Cu, Zn and Sn configuring Cu2ZnSnS4, and a photoelectric conversion device prepared with the CZTS-based compound semiconductor.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 13, 2014
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN FINE CERAMICS CENTER
    Inventors: Takenobu Sakai, Hiroki Awano, Ryosuke Maekawa, Taro Ueda, Seiji Takahashi
  • Publication number: 20140311564
    Abstract: A method of manufacturing a ZnMgO film includes the steps of in order: dissolving a zinc material and a magnesium material in an aqueous ammonia solution having a temperature at which, in an aqueous solution state diagram which represents ion concentrations on a vertical axis and pH on a horizontal axis, a line a demarcated by a region where Zn(OH)2 precipitates and a region where ZnO22? can exist is positioned on a low pH side from a line ? demarcated by a region where magnesium ions can exist and a region where Mg(OH)2 precipitates, and adjusting the pH of the aqueous ammonium solution and the zinc ion concentration and magnesium ion concentration in the aqueous ammonia solution within a region lying between the line a and line ?; elevating the temperature of the aqueous ammonia solution to a temperature at which Zn(OH)2 and Mg(OH)2 precipitate; and firing the precipitate.
    Type: Application
    Filed: October 25, 2012
    Publication date: October 23, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Maekawa, Hiroki Awano, Tomoya Matsunaga, Yuichiro Takeda, Takenobu Sakai