Patents by Inventor Ryosuke OHSAWA

Ryosuke OHSAWA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240030432
    Abstract: A positive electrode active material includes a secondary particle. The secondary particle includes a primary particle. The primary particle includes lithium-containing layered transition metal oxide. In a bright field image by transmission electron microscopy, a histogram of luminance of the primary particle has a peak. The peak has a half-value width of 39 or more.
    Type: Application
    Filed: May 8, 2023
    Publication date: January 25, 2024
    Inventor: Ryosuke OHSAWA
  • Publication number: 20230257282
    Abstract: Provided is a method for leaching nickel from a nickel oxide ore that enables a nickel sulfate production method which is easily carried out with a small amount of waste generation. The method for leaching nickel into an organic phase disclosed here includes the step of bringing a nickel ore into contact with an organic phase. The organic phase contains a hydrophobic deep eutectic solvent including a hydrogen bond donor and a hydrogen bond acceptor, and an organic acid. The hydrogen bond donor is an acidic hydrogen bond donor. The organic acid is a strong acid.
    Type: Application
    Filed: February 8, 2023
    Publication date: August 17, 2023
    Applicants: PRIME PLANET ENERGY & SOLUTIONS, INC., KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, TOYOTA TSUSHO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuji YAMAMOTO, Masahiro GOTO, Takafumi HANADA, Takeru MORIYAMA, Ryosuke OHSAWA
  • Publication number: 20230223520
    Abstract: In this disclosure, a battery is provided. The electrode includes an electrode current collector and an electrode active material layer, wherein the electrode active material layer includes a single crystal electrode active material and a polycrystalline electrode active material, and the single crystal electrode active material and the polycrystalline electrode active material are each a lithium transition metal composite oxide, and the electrode active material layer includes a first layer including a first surface opposite to the electrode current collector and a second layer including a second surface on the electrode current collector side, wherein the first layer includes the single crystal electrode active material as a main component of the electrode active material, and the second layer includes the polycrystalline electrode active material as a main component of the electrode active material.
    Type: Application
    Filed: December 2, 2022
    Publication date: July 13, 2023
    Inventors: Ryosuke OHSAWA, Masashi UEDA, Takuo YANAGI, Sokichi OKUBO
  • Patent number: 11646420
    Abstract: Provided is a positive electrode material that allows reducing the low-temperature resistance of a secondary battery. The positive electrode material of a secondary battery includes positive electrode active material particles each having a void in the interior, and a compound (A) that is present at least within the void. The average diameter of the void is not less than 0.01 ?m and not more than 1 ?m. The compound (A) is a nitrile group-containing polymer, and the proportion of nitrogen atoms, relative to metal atoms included in the positive electrode active material particles, other than lithium, is not less than 1 atom % and not more than 10 atom %; alternatively, the compound (A) is an alkoxysilane compound, and then the proportion of silicon atoms, relative to metal atoms included in the positive electrode active material particles, other than lithium, is not less than 1 atom % and not more than 10 atom %.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: May 9, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Ryosuke Ohsawa
  • Publication number: 20230063022
    Abstract: A main object of the present disclosure is to provide a method for producing a cathode active material capable of obtaining a cathode active material with small particle size. The present disclosure achieves the object by providing a method for producing a cathode active material including a composite oxide, the method comprising: a preparing step of preparing a precursor containing Li, and Me, which is at least one kind of Ni, Co, Mn, Al and Fe; and a burning step of burning the precursor to obtain the composite oxide; wherein in the preparing step, a polymercontaining aqueous solution in which a water-soluble polymer is dissolved is used to introduce the water-soluble polymer into a secondary particle configured in the precursor.
    Type: Application
    Filed: August 23, 2022
    Publication date: March 2, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Ryosuke OHSAWA
  • Patent number: 11424437
    Abstract: A negative electrode for a non-aqueous electrolyte secondary battery is provided. The negative electrode includes at least a negative electrode active material. The negative electrode active material includes a first type of silicon oxide particles and a second type of silicon oxide particles. The first type of silicon oxide particles has not been pre-doped with lithium. The second type of silicon oxide particles has been pre-doped with lithium. The first type of silicon oxide particles has a first average particle size. The second type of silicon oxide particles has a second average particle size. The ratio of the second average particle size to the first average particle size is not lower than 1.5 and not higher than 11.2.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: August 23, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Akira Tsujiko, Kaoru Inoue
  • Patent number: 11296314
    Abstract: A negative electrode material contains composite particles. Each of the composite particles contains a negative electrode active material particle and a film. The negative electrode active material particle contains a silicon oxide phase and a lithium silicate phase. The film covers a surface of the negative electrode active material particle. The film contains an anion-exchange resin. To an ion-exchange group of the anion-exchange resin, a fluoride ion is bound. The content of the anion-exchange resin in the negative electrode material is not higher than 33 mass %.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 5, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Akira Tsujiko, Kaoru Inoue
  • Patent number: 11139464
    Abstract: A first silicon oxide material and a second silicon oxide material are prepared. A dispersion is prepared by dispersing the first silicon oxide material in an aqueous carboxymethylcellulose solution. A negative electrode composite material slurry is prepared by dispersing the second silicon oxide material and a binder in the dispersion. A negative electrode is produced by applying the negative electrode composite material slurry to a surface of a negative electrode current collector and then performing drying. The binder includes no carboxymethylcellulose. The first silicon oxide material has not been pre-doped with lithium. The second silicon oxide material has been pre-doped with lithium.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 5, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Akira Tsujiko, Kaoru Inoue
  • Patent number: 11133525
    Abstract: A lithium-ion secondary battery includes at least a negative electrode, a positive electrode, and an electrolyte solution. The negative electrode includes at least negative electrode active material particles. Each of the negative electrode active material particles contains at least a SiOx particle and a Si layer. The Si layer covers a surface of the SiOx particle. The Si layer has a thickness not smaller than 10 nm and not greater than 100 nm. The electrolyte solution contains at least one selected from the group consisting of FEC and VC.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: September 28, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Keisuke Ohara, Akihiro Taniguchi, Kaoru Inoue
  • Publication number: 20210249660
    Abstract: Provided is a positive electrode material that allows reducing the low-temperature resistance of a secondary battery. The positive electrode material of a secondary battery includes positive electrode active material particles each having a void in the interior, and a compound (A) that is present at least within the void. The average diameter of the void is not less than 0.01 ?m and not more than 1 ?m. The compound (A) is a nitrile group-containing polymer, and the proportion of nitrogen atoms, relative to metal atoms included in the positive electrode active material particles, other than lithium, is not less than 1 atom % and not more than 10 atom %; alternatively, the compound (A) is an alkoxysilane compound, and then the proportion of silicon atoms, relative to metal atoms included in the positive electrode active material particles, other than lithium, is not less than 1 atom % and not more than 10 atom %.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 12, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Ryosuke OHSAWA
  • Patent number: 11011753
    Abstract: A lithium-ion secondary battery includes at least a negative electrode, a positive electrode, and an electrolyte. The negative electrode includes at least a negative electrode active material and a polymer binder. The negative electrode active material includes at least a graphitic material and a silicon oxide material. The amount of acidic functional groups per unit surface area of graphitic material is not lower than 0.017 mmol/m2 and not higher than 0.086 mmol/m2. A polymer binder contains a carboxy group. Polymer binder has a main chain with a length not smaller than 0.53 ?m and not greater than 2.13 ?m.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: May 18, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Keisuke Ohara, Akihiro Taniguchi, Kaoru Inoue
  • Patent number: 11011744
    Abstract: A non-aqueous electrolyte secondary battery includes at least a negative electrode composite material layer. The negative electrode composite material layer includes a negative electrode active material, a conductive material, and a binder. The negative electrode active material includes a silicon oxide material and a graphite material. The negative electrode composite material layer has a BET specific surface area not smaller than 3.5 m2/g and not greater than 5.0 m2/g. In an orthogonal coordinate system having an abscissa representing the elongation of the negative electrode composite material layer and an ordinate representing the electrical resistance of the negative electrode composite material layer, an elongation at a bending point (Cp) in the plot is 12% or higher.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: May 18, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Akihiro Taniguchi, Kaoru Inoue
  • Patent number: 10971726
    Abstract: The positive electrode includes a positive electrode composite layer. The negative electrode includes a negative electrode composite material layer. A whole of the positive electrode composite layer and a portion of the negative electrode composite material layer face each other with the separator being interposed therebetween. The negative electrode composite material layer includes a first region and a second region. The first region is a region that does not face the positive electrode composite layer and that extends from a position facing one end portion of the positive electrode composite layer to a point separated from the position by more than or equal to 0.1 mm and less than or equal to 10 mm. The second region is a region other than the first region. The first region includes silicon oxide doped with lithium. The second region includes silicon oxide.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: April 6, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Akira Tsujiko, Kaoru Inoue
  • Patent number: 10923705
    Abstract: A negative electrode active material, a first carbon material, a thickener, and a solvent are mixed to prepare a first dispersion solution. The first dispersion solution and a second carbon material are mixed to prepare a second dispersion solution. The second dispersion solution and a binder are mixed to prepare a negative electrode paint. The negative electrode paint is applied to a surface of a negative electrode current collector and dried to produce a negative electrode for a nonaqueous electrolyte secondary battery. The negative electrode active material has a BET specific surface area of 3 m2/g or more and 8 m2/g or less. The first carbon material has a BET specific surface area of 30 m2/g or more and 100 m2/g or less. The second carbon material has a BET specific surface area of 200 m2/g or more and 500 m2/g or less.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: February 16, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Kaoru Inoue, Naoto Onodera
  • Patent number: 10886569
    Abstract: A non-aqueous electrolyte secondary battery includes a negative electrode, a positive electrode, and an electrolyte solution. The electrolyte solution contains at least one selected from the group consisting of ethylene carbonate, fluoroethylene carbonate, and vinylene carbonate. The negative electrode includes a negative electrode mixture layer. The negative electrode mixture layer contains a silicon-containing particle and a graphite particle. In a Log-differential pore volume distribution of the negative electrode mixture layer, the ratio of a Log-differential pore volume at a pore diameter of 2 ?m to a Log-differential pore volume at a pore diameter of 0.2 ?m is within a range of 10.5 to 33.1.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: January 5, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryosuke Ohsawa, Akira Tsujiko, Kaoru Inoue
  • Patent number: 10622619
    Abstract: The negative electrode plate includes at least a negative electrode composite material layer. The negative electrode composite material layer has a density of 1.5 g/cm3 or more. The negative electrode composite material layer contains at least first particles, second particles and a binder. The first particles contain graphite particles and an amorphous carbon material. The amorphous carbon material is coated on the surface of each graphite particle. The second particles are made of silicon oxide. The ratio of the second particles to the total amount of the first particles and the second particles is 2 mass % or more to 10 mass % or less. The negative electrode plate has a spring constant of 700 kN/mm or more to 3000 kN/mm or less.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: April 14, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akira Tsujiko, Ryosuke Ohsawa, Kaoru Inoue, Akihiro Taniguchi, Keisuke Ohara
  • Publication number: 20200035992
    Abstract: A negative electrode for a non-aqueous electrolyte secondary battery is provided. The negative electrode includes at least a negative electrode active material. The negative electrode active material includes a first type of silicon oxide particles and a second type of silicon oxide particles. The first type of silicon oxide particles has not been pre-doped with lithium. The second type of silicon oxide particles has been pre-doped with lithium. The first type of silicon oxide particles has a first average particle size. The second type of silicon oxide particles has a second average particle size. The ratio of the second average particle size to the first average particle size is not lower than 1.5 and not higher than 11.2.
    Type: Application
    Filed: July 9, 2019
    Publication date: January 30, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Akira Tsujiko, Kaoru Inoue
  • Publication number: 20200028160
    Abstract: A non-aqueous electrolyte secondary battery includes at least a negative electrode composite material layer. The negative electrode composite material layer includes a negative electrode active material, a conductive material, and a binder. The negative electrode active material includes a silicon oxide material and a graphite material. The negative electrode composite material layer has a BET specific surface area not smaller than 3.5 m2/g and not greater than 5.0 m2/g. In an orthogonal coordinate system having an abscissa representing the elongation of the negative electrode composite material layer and an ordinate representing the electrical resistance of the negative electrode composite material layer, an elongation at a bending point (Cp) in the plot is 12% or higher.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 23, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke OHSAWA, Akihiro TANIGUCHI, Kaoru INOUE
  • Patent number: 10535867
    Abstract: The present teaching provides a non-aqueous electrolyte secondary battery provided with a non-aqueous electrolyte solution having a composition able to achieve high battery performance even in an extremely low temperature region (for example, ?30° C. or lower). The non-aqueous electrolyte solution disclosed herein contains, as non-aqueous solvents, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and ethyl propionate (EP), and when the total volume of the non-aqueous solvents is 100 vol. %, the content of EC is 20 to 30 vol. %, the content of PC is 5 to 10 vol. %, the content of EP is 5 to 10 vol. %, and the content of DMC+EMC is 50 to 70 vol. %.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: January 14, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenta Ishii, Ryosuke Ohsawa, Koji Abe, Kei Shimamoto, Makoto Babazono
  • Publication number: 20200006747
    Abstract: A first silicon oxide material and a second silicon oxide material are prepared. A dispersion is prepared by dispersing the first silicon oxide material in an aqueous carboxymethylcellulose solution. A negative electrode composite material slurry is prepared by dispersing the second silicon oxide material and a binder in the dispersion. A negative electrode is produced by applying the negative electrode composite material slurry to a surface of a negative electrode current collector and then performing drying. The binder includes no carboxymethylcellulose. The first silicon oxide material has not been pre-doped with lithium. The second silicon oxide material has been pre-doped with lithium.
    Type: Application
    Filed: June 12, 2019
    Publication date: January 2, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke OHSAWA, Akira TSUJIKO, Kaoru INOUE