Patents by Inventor Ryota ESAKI

Ryota ESAKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230275271
    Abstract: The present disclosure is to provide a nonaqueous electrolytic solution for a nonaqueous electrolytic solution battery in which even if the nonaqueous electrolytic solution is applied to a positive electrode having a content of nickel of 30% by mass to 100% by mass in a metal contained in a positive electrode active material, an effect of improving output characteristics after cycle and an effect of reducing a deposition amount of a negative electrode current collector metal on a surface of a negative electrode after initial charging and discharging can be exerted in a well-balanced manner.
    Type: Application
    Filed: August 31, 2021
    Publication date: August 31, 2023
    Inventors: Katsutoshi SUZUKI, Arata TAKAHASHI, Ryota ESAKI, Wataru KAWABATA, Toru TANAKA, Tsubasa ITAKURA, Takayoshi MORINAKA, Mikihiro TAKAHASHI, Shuji HARADA
  • Publication number: 20220271340
    Abstract: The present invention provides: a nonaqueous electrolyte solution which is used in a nonaqueous electrolyte battery having a low initial resistance value; and a compound which is contained in this nonaqueous electrolyte solution. A nonaqueous electrolyte solution according to the present invention contains a compound represented by formula (1), a solute and a nonaqueous organic solvent. In general formula (1), each of R1 and R2 represents PO(Rf)2 or SO2Rf, and Rf represents, for example, a fluorine atom; each of R3 and R4 represents, for example, a lithium ion, or alternatively R3 and R4 may form a ring structure together with a nitrogen atom to which the moieties are bonded, and in this case, R3 and R4 form an alkylene group in combination with each other; an oxygen atom may be contained between carbon atom-carbon atom bonds in the alkylene group; a side chain thereof may have an alkyl group; and an arbitrary hydrogen atom in the alkyl group and the alkylene group may be substituted by a fluorine atom.
    Type: Application
    Filed: July 22, 2020
    Publication date: August 25, 2022
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Ryosuke TERADA, Mikihiro TAKAHASHI, Takayoshi MORINAKA, Ryota ESAKI, Susumu IWASAKI, Miyuki YAMAUCHI, Wataru KAWABATA, Masahiro MIURA
  • Publication number: 20200335823
    Abstract: An electrolyte solution for a nonaqueous electrolyte battery according to the present invention includes the following components: (I) a nonaqueous organic solvent; (II) an ionic salt as a solute; (III) at least one kind of additive selected from the group consisting of compounds represented by the general formula (1); and (IV) an additive having a specific structure. Si(R1)a(R2)4-a??(1) The combined use of the components (III) and (IV) provides the effects of reducing the elution of Ni from the Ni-rich positive electrode into the electrolyte solution, without impairing the capacity retention rate of the battery after cycles, and improving the high-temperature storage stability of the electrolyte solution.
    Type: Application
    Filed: December 10, 2018
    Publication date: October 22, 2020
    Inventors: Mikihiro TAKAHASHI, Takayoshi MORINAKA, Masutaka SHINMEN, Wataru KAWABATA, Makoto KUBO, Katsumasa MORI, Ryota ESAKI, Takahiro TANIGAWA
  • Patent number: 10361452
    Abstract: A garnet-type oxide sintered body according to the present invention includes crystal grains composed of a garnet-type oxide containing Li, La and Zr and a grain boundary composition containing boron and silicon and filling gaps between the crystal grains. The oxide sintered body has the characteristics of high density and high ion conductivity. A production method of the sintered body includes a step of providing a precursor material by mixing a garnet-type oxide powder containing Li, La and Zr with a sintering aid; a step of forming the precursor material into a formed body; and a sintering step of sintering the formed body. The sintering aid contains oxygen, boron, silicon and lithium. The oxygen and boron, or the oxygen and silicon, contained in the sintered aid form a compound.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: July 23, 2019
    Assignee: Central Glass Company, Limited
    Inventors: Tsutomu Nishizaki, Ryota Esaki, Tetsuya Tamura
  • Publication number: 20180219224
    Abstract: Provided is a sintered body which is a composite of an electrode active material and an oxide-based solid electrolyte. The sintered body used is characterized by containing lithium titanate having the spinel crystal structure and/or lithium titanate having the ramsdellite crystal structure, and lithium lanthanum titanate having the perovskite crystal structure. The sintered body can be obtained by, for example, a sintered body production method including a step for obtaining a molded body by molding a mixture of a precursor for lithium titanate and a precursor for lithium lanthanum titanate, or a mixture of lithium titanate and lithium lanthanum titanate, and a sintering step for sintering the molded body, or the like.
    Type: Application
    Filed: July 28, 2016
    Publication date: August 2, 2018
    Inventors: Ryota ESAKI, Tsutomu NISHIZAKI, Tetsuya TAMURA
  • Publication number: 20180175446
    Abstract: A garnet-type oxide sintered body according to the present invention includes crystal grains composed of a garnet-type oxide containing Li, La and Zr and a grain boundary composition containing boron and silicon and filling gaps between the crystal grains. The oxide sintered body has the characteristics of high density and high ion conductivity. A production method of the sintered body includes a step of providing a precursor material by mixing a garnet-type oxide powder containing Li, La and Zr with a sintering aid; a step of forming the precursor material into a formed body; and a sintering step of sintering the formed body. The sintering aid contains oxygen, boron, silicon and lithium. The oxygen and boron, or the oxygen and silicon, contained in the sintered aid form a compound.
    Type: Application
    Filed: July 13, 2016
    Publication date: June 21, 2018
    Applicant: Central Glass Company, Limited
    Inventors: Tsutomu NISHIZAKI, Ryota ESAKI, Tetsuya TAMURA
  • Publication number: 20170250405
    Abstract: Provided is a precursor with which it is possible to form a solid electrolyte and negative electrode active material while preventing loss of mass during firing at 1,000° C. or lower. A precursor for forming a composite product of lithium titanate and lithium lanthanum titanate by firing, wherein a precursor of a lithium titanate composite product is used that is characterized in comprising a solid material that includes a composite salt of Li and Ti and an La source compound. Such a precursor of a lithium titanate composite product is obtained by a production method that is characterized in including a step for forming a solid material by heating a mixture that includes at least a Ti source, a Li source, and solvent by solvothermal treatment.
    Type: Application
    Filed: July 30, 2015
    Publication date: August 31, 2017
    Inventors: Ryota ESAKI, Tsutomu NISHIZAKI, Tetsuya TAMURA
  • Publication number: 20160293947
    Abstract: This invention provides the following: a solid-electrolyte precursor that yields a solid electrolyte when fired at a temperature lower than the firing temperatures used in solid phase methods and has a low mass reduction rate when thus fired; a method for manufacturing said solid-electrolyte precursor; a method for manufacturing a solid electrolyte; and a method for manufacturing a solid-electrolyte/electrode-active-material complex. This solid-electrolyte precursor, which is fired at a temperature less than or equal to 1,000° C. in order to synthesize a solid electrolyte that has a single-phase perovskite structure or a single-phase garnet structure and contains lithium, a group 3 element, and a group 4 element and/or a group 5 element, contains lithium, an oxide and/or hydroxide of a group 3 element, and an oxide and/or hydroxide of a group 4 element and/or a group 5 element.
    Type: Application
    Filed: October 14, 2014
    Publication date: October 6, 2016
    Inventors: Tetsuya TAMURA, Ryota ESAKI, Tsutomu NISHIZAKI