Patents by Inventor Ryotaro Miura

Ryotaro Miura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9059706
    Abstract: A drive circuit is used for driving a switching element. The drive circuit includes a detection unit and an integrated circuit. The detection unit detects a state of a controlled switching element and outputs a voltage signal corresponding to a detection result of the state. The integrated circuit receives the voltage signal via an input terminal for the detection result and controls the switching element based on the received voltage signal. The input terminal includes at least two input terminals that are connected to each other so as to receive the same voltage signal from the detection unit.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 16, 2015
    Assignee: DENSO CORPORATION
    Inventors: Syun Miyauchi, Tsuneo Maebara, Yoshiyuki Hamanaka, Ryotaro Miura
  • Publication number: 20150102820
    Abstract: A battery monitoring apparatus capable of reducing power consumption. At least one monitoring integrated circuit (IC) is electrically connected to a high-voltage battery formed of a plurality of cells and configured to monitor the high-voltage battery in a plurality of modes of operation. A low-voltage power supply circuit can deliver power of a lower voltage than the power of the high-voltage battery to the at least one monitoring IC. A power supply to the at least one monitoring IC is selected from a group of the high-voltage battery and the low-voltage power supply circuit depending on the mode of operation the at least one monitoring IC.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 16, 2015
    Inventors: Shunichi MIZOBE, Tsuneo MAEBARA, Ryotaro MIURA, Masaya ITOU
  • Publication number: 20150077060
    Abstract: In an equalization device for equalizing voltages of battery cells connected in series, each battery cell is provided with an equalization switch and a level shift section. The level shift section includes at least one level shift circuit. Each level shift circuit operates on a power supply voltage supplied from a series circuit of a predetermined number of adjacent battery cells. The level shift circuits are arranged so that potentials of the power supply voltages are different from each other in sequence. In the level shift section, a first level shift circuit outputs a pair of drive voltages by level-shifting a pair of control signals inputted from a second level shift circuit adjacent to the first level shift circuit, and a last level shift circuit outputs the pair of drive voltages as a control voltage for a corresponding equalization switch.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 19, 2015
    Inventors: Shouichi OKUDA, Ryotaro MIURA
  • Patent number: 8981689
    Abstract: In a driver, a discharging module discharges, at a discharging rate, the on-off control terminal of a switching element in response to a drive signal being shifted from an on state to an off state. A changing module determines whether a condition including a level of a sense signal being higher than a threshold level during the on state of the drive signal is met, and changes the discharging rate of the on-off control terminal in response to the drive signal being shifted from the off state to the on state upon determination that the condition is met. A loosening module loosens the condition after a lapse of a period since the shift of the drive signal from the off state to the on state in comparison to the condition immediately after the shift of the drive signal from the off state to the on state.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: March 17, 2015
    Assignee: Denso Corporation
    Inventors: Tomotaka Suzuki, Ryotaro Miura, Takeyasu Komatsu
  • Patent number: 8970281
    Abstract: A load driver includes a switching element connected to a load, a constant current generator that generates a constant current, and a driver circuit that turns on the switching element for an on-period, which depends on a value of the constant current and is shortened with an increase in the value of the constant current. The constant current generator supplies a first constant current having a first current value to the driver circuit during the on-period, and supplies a second constant current having a second current value smaller than the first current value after the on-period has elapsed and the switching element reaches an on state.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: March 3, 2015
    Assignee: DENSO CORPORATION
    Inventors: Teppei Kawamoto, Yasutaka Senda, Ryotaro Miura
  • Publication number: 20150054519
    Abstract: A route switching circuit includes: a pair of normal detection routes that output voltages of a positive side connection point and a negative side connection point, which are different from each other, in multiple batteries for constituting an assembled battery; and a pair of diagnosis detection routes that output the voltages of the positive side connection point and the negative side connection point, and confirm a connection state of the normal detection routes by using the normal detection routes, which output at least one of a voltage of a positive side battery connected to a positive side from the positive side connection point and a voltage of a negative side battery connected to a negative side from the negative side connection point.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 26, 2015
    Inventors: Yukihiro TOMONAGA, Tetsuya MAKIHARA, Kazutaka HONDA, Nobuyoshi OSAMURA, Ryotaro MIURA
  • Patent number: 8963524
    Abstract: A first-path connects an input-terminal and an output-terminal of a high-potential-side switching-element and includes a high-potential-side rectifying-device and a high-potential-side passive-element. A second-path connects the output-terminal of the high-potential-side switching-element and the output-terminal of a low-potential-side switching-element and includes a low-potential-side rectifying-device and a low-potential-side passive-element. A high-potential-side applying-unit applies voltage to a connecting point between the high-potential-side rectifying-device and the high-potential-side passive-element. A high-potential-side determining-unit determines that an overcurrent is flowing between the input-terminal and the output-terminal of the high-potential-side switching-element by using a first-value. A limiting-unit limits a current between the low-potential-side rectifying-device and the output-terminal of the high-potential-side switching-element if the overcurrent is flowing.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: February 24, 2015
    Assignee: Denso Corporation
    Inventors: Yoshiyuki Hamanaka, Ryotaro Miura
  • Publication number: 20150035487
    Abstract: An equalization device for equalizing voltages of battery cells connected in series includes equalization switches, resistors, and a control circuit. Each equalization switch has energization terminals interposed between terminals of a corresponding battery cell. A current path between the energization terminals conducts when a control voltage not less than a threshold voltage is applied between control terminals of the equalization switch. Each resistor is connected between the control terminals of the corresponding equalization switch. The control circuit switches an equalization execution state and an equalization stop state in accordance with an equalization signal provided for each battery cell. In the execution state, the control circuit passes an electric current through the corresponding resistor to generate the control voltage not less than the threshold voltage. In the stop state, the control circuit causes the corresponding resistor to generate the control voltage less than the threshold voltage.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 5, 2015
    Inventors: Teppei KAWAMOTO, Nobuyoshi OSAMURA, Ryotaro MIURA, Tomomichi MIZOGUCHI
  • Publication number: 20150035569
    Abstract: A semiconductor element module includes a driving element and a voltage change detecting element each formed of a voltage driving semiconductor element. The voltage change detecting element detects a change of a voltage between a collector and an emitter or between a drain and a source of the driving element. A collector or a drain of the voltage change detecting element is connected to the collector or the drain of the driving element, and a gate of the voltage change detecting element is connected to an emitter or a source of the voltage change detecting element. The emitter or the source of the voltage change detecting element is provided as a detecting terminal.
    Type: Application
    Filed: July 16, 2014
    Publication date: February 5, 2015
    Inventors: Ryotaro MIURA, Takashi GOTOU
  • Patent number: 8842405
    Abstract: An electronic device that is capable of detecting an abnormal state such that a switching element is unable to be turned off in spite of a drive signal instructing turn-off of the switching element. The device includes a switching element that is driven by controlling a voltage on its control terminal, a drive circuit that controls the voltage on the control terminal of the switching element on the basis on an inputted drive signal to drive the switching element. In cases where there exists a current flowing through the switching element in spite of the drive signal instructing turn-off of the switching element, the drive circuit determines that the switching element is in an abnormal state, and cuts off supply of voltage from a drive power supply circuit to the control terminal of the switching element to thereby turn off the switching element.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 23, 2014
    Assignee: Denso Corporation
    Inventors: Ryotaro Miura, Yasunari Tanimura, Noriyuki Takagi
  • Patent number: 8766671
    Abstract: A load driving apparatus for driving a load with a constant current includes a shunt resistor and a driver circuit. A shunt current corresponding to the constant current flows though the shunt resistor. The driver circuit is connected to a first end of the shunt resistor to supply the constant current corresponding to the shunt current to the load. The driver circuit includes a reference voltage source for generating a predetermined reference voltage. The driver circuit adjusts the magnitude of the constant current by performing a feedback-control of the magnitude of the shunt current in such a manner that a first voltage corresponding to the reference voltage and a second voltage corresponding to a voltage at the first end of the shunt resistor become equal to each other.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: July 1, 2014
    Assignee: Denso Corporation
    Inventors: Yasutaka Senda, Ryotaro Miura, Kazuki Yamauchi
  • Patent number: 8749279
    Abstract: In a driver apparatus for driving a voltage-controlled switching element, an absolute value of a voltage difference between a voltage at a reference terminal that is one of terminals of a current path of the switching element and a voltage at the switching control terminal of the switching element is clamped at a clamping voltage greater than a threshold voltage. A voltage greater than the threshold voltage applied to the switching control terminal allows the switching element to be turned on. When the current flowing through the switching element becomes equal to or greater than a clamp threshold after the switching element transitions from an off-state to an on-state, a voltage-drop-rate at which the absolute value is decreased to the clamping voltage is decreased.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: June 10, 2014
    Assignee: Denso Corporation
    Inventors: Hiroyuki Morita, Tsuneo Maebara, Takeyasu Komatsu, Ryotaro Miura, Tomotaka Suzuki
  • Patent number: 8729929
    Abstract: A gate driving circuit includes a gate control circuit and a gate voltage limit circuit. The gate control circuit establishes or breaks electrical continuity of a gate voltage supply path from a power source line to a gate terminal of a transistor in response to an on-command and an off-command. The gate voltage limit circuit limits a gate voltage of the transistor to be less than or equal to a first voltage in response to the on-command at least in a period until a determination of whether an electric current greater than a fault criterion value flows to the transistor ends and then limits the gate voltage to be less than or equal to a second voltage.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: May 20, 2014
    Assignee: DENSO CORPORATION
    Inventors: Teppei Kawamoto, Ryotaro Miura
  • Patent number: 8723562
    Abstract: In a drive unit for a reverse-conducting switching element which is a driven switching element, a process to transfer electric charges to a conductive control terminal of the driven switching element is performed on the basis of a turn-on command or a turn-off command, thereby turning on and off the driven switching element. A transfer rate of the electric charges is changed in a period from when the transfer of the electric charges to the conductive control terminal is started until when it is completed. While judged that forward current flows in a free-wheel diode, the electric charges are inhibited from being charged to the conduction control terminal which corresponds to the free-wheel diode in which the forward current is judged to flow. While the electric charges are inhibited from being charged to the conductive control terminal, a change of the transfer rate is disabled.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: May 13, 2014
    Assignee: Denso Corporation
    Inventors: Tomotaka Suzuki, Yoshiyuki Hamanaka, Ryotaro Miura
  • Patent number: 8680896
    Abstract: An apparatus is provided to drive a voltage controlled switching element having a conduction control terminal. In the apparatus, it is determined whether or not voltage at the conduction control terminal is at a first voltage which is lower than a second voltage and which is equal to or more than a threshold voltage. The second voltage is a voltage provided when the switching element is in a normal on-state thereof. The threshold voltage is voltage at which the switching element is switched on. When it is determined that the voltage at the conduction control terminal is at the first voltage, the switching element is forcibly switched off.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: March 25, 2014
    Assignee: DENSO Corporation
    Inventors: Junichi Fukuta, Tsuneo Maebara, Ryotaro Miura
  • Publication number: 20140062361
    Abstract: In a driver, a discharging module discharges, at a discharging rate, the on-off control terminal of a switching element in response to a drive signal being shifted from an on state to an off state. A changing module determines whether a condition including a level of a sense signal being higher than a threshold level during the on state of the drive signal is met, and changes the discharging rate of the on-off control terminal in response to the drive signal being shifted from the off state to the on state upon determination that the condition is met. A loosening module loosens the condition after a lapse of a period since the shift of the drive signal from the off state to the on state in comparison to the condition immediately after the shift of the drive signal from the off state to the on state.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: DENSO CORPORATION
    Inventors: Tomotaka SUZUKI, Ryotaro MIURA, Takeyasu KOMATSU
  • Patent number: 8659248
    Abstract: A drive device has a break circuit. The break circuit inputs phase-current values transferred from phase-current sensors mounted on an electrical path of a motor generator. A power switching element is equipped with a freewheel diode connected in parallel with each other. An inverter has pairs of the power switching elements. In each pair, the power switching element in a high voltage side and the power switching element in a low voltage side are connected in series. It is detected for the freewheel diode to be in a freewheel mode when a forward current flows in the freewheel diode. The break circuit detects the freewheel mode where the current flows in the freewheel diode in a lower arm when the phase-current value is not less than a predetermined threshold value. The break circuit detects the freewheel mode where the current flows in the freewheel diode in an upper arm when the phase-current value is not more than the threshold current value.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: February 25, 2014
    Assignee: Denso Corporation
    Inventors: Ryotaro Miura, Tsuneo Maebara, Yusuke Shindo, Junichi Fukuta, Junichi Nagata
  • Publication number: 20140035629
    Abstract: In a driver apparatus for driving a voltage-controlled switching element, an absolute value of a voltage difference between a voltage at a reference terminal that is one of terminals of a current path of the switching element and a voltage at the switching control terminal of the switching element is clamped at a clamping voltage greater than a threshold voltage. A voltage greater than the threshold voltage applied to the switching control terminal allows the switching element to be turned on. When the current flowing through the switching element becomes equal to or greater than a clamp threshold after the switching element transitions from an off-state to an on-state, a voltage-drop-rate at which the absolute value is decreased to the clamping voltage is decreased.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 6, 2014
    Applicant: DENSO CORPORATION
    Inventors: Hiroyuki MORITA, Tsuneo MAEBARA, Takeyasu KOMATSU, Ryotaro MIURA, Tomotaka SUZUKI
  • Patent number: 8633755
    Abstract: A load driver includes a switching element connected to a load, a constant current generator that generates a constant current, and a driver circuit that turns on the switching element for an on-period, which depends on a value of the constant current and is shortened with an increase in the value of the constant current. The constant current generator supplies a first constant current having a first current value to the driver circuit during the on-period, and supplies a second constant current having a second current value smaller than the first current value after the on-period has elapsed and the switching element reaches an on state.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 21, 2014
    Assignee: DENSO CORPORATION
    Inventors: Teppei Kawamoto, Ryotaro Miura
  • Publication number: 20130307593
    Abstract: In a drive unit for a switching element, a drive circuit changes the switching element between an on-state and an off-state, by controlling a potential difference between a reference terminal, which is one of a pair of ends of a current path of the switching element, and an opening-closing control terminal of the switching element. A determination section determines, if an on-operation command or an off-operation command is inputted as an operation signal for the switching element, whether or not the potential difference has reached a specific value toward which the potential difference shifts, in response to one of the operation commands, with respect to a threshold value by which the switching element is turned on. A forcible processing section removes charge for turning on the switching element from the opening-closing control terminal, if the determination section determines that the potential difference has not reached the specific value.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 21, 2013
    Inventors: Junichi FUKUTA, Tsuneo MAEBARA, Ryotaro MIURA, Takeyasu KOMATSU