Patents by Inventor Ryousuke Kushibiki

Ryousuke Kushibiki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11810700
    Abstract: A CoPt-oxide-based in-plane magnetized film having a magnetic coercive force of 2.00 kOe or more and remanent magnetization per unit area Mrt of 2.00 memu/cm2 or more. The in-plane magnetized film for use as a hard bias layer of a magnetoresistive element contains metal Co, metal Pt, and an oxide. The in-plane magnetized film contains the metal Co in an amount of 55 at % or more and less than 95 at % and the metal Pt in an amount of more than 5 at % and 45 at % or less relative to a total of metal components of the in-plane magnetized film, and contains the oxide in an amount of 10 vol % or more and 42 vol % or less relative to a whole amount of the in-plane magnetized film. The in-plane magnetized film has a thickness of 20 nm or more and 80 nm or less.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: November 7, 2023
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kim Kong Tham, Ryousuke Kushibiki, Masahiro Aono, Yasunobu Watanabe
  • Publication number: 20230203639
    Abstract: Provided is a magnetic recording medium having a large magnetocrystalline anisotropy constant Ku and a high coercivity Hc as well as a sputtering target used for producing such a magnetic recording medium. A Pt-oxide-based sputtering target consists of 60 vol % or more and less than 100 vol % of a Pt-base alloy phase and more than 0 vol % and 40 vol % or less of an oxide, where the Pt-base alloy phase contains 50 at % or more and 100 at % or less of Pt.
    Type: Application
    Filed: May 17, 2021
    Publication date: June 29, 2023
    Inventors: Kim Kong Tham, Tomonari Kamada, Ryousuke Kushibiki
  • Publication number: 20230187109
    Abstract: An in-plane magnetized film for use as a hard bias layer of a magnetoresistive effect element contains metal Co, metal Pt, and an oxide and has a thickness of 20 nm or more and 80 nm or less, wherein: the in-plane magnetized film contains the metal Co in an amount of 45 at% or more and 80 at% or less and the metal Pt in an amount of 20 at% or more and 55 at% or less relative to a total of metal components of the in-plane magnetized film; the in-plane magnetized film contains the oxide in an amount of 3 vol% or more and 25 vol% or less relative to a whole amount of the in-plane magnetized film; and the in-plane direction average grain diameter of magnetic crystal grains of the in-plane magnetized film is 15 nm or more and 30 nm or less.
    Type: Application
    Filed: April 28, 2021
    Publication date: June 15, 2023
    Applicant: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Ryousuke KUSHIBIKI, Kim Kong THAM, Tomonari KAMADA
  • Publication number: 20230168319
    Abstract: An in-plane magnetized film multilayer structure for use as a hard bias layer of a magnetoresistive effect element contains a plurality of in-plane magnetized films and a nonmagnetic intermediate layer. The nonmagnetic intermediate layer is disposed between the in-plane magnetized films, and the in-plane magnetized films adjacent across the nonmagnetic intermediate layer are coupled by a ferromagnetic coupling. Each of the in-plane magnetized films contains metal Co and metal Pt, and contains the metal Co in an amount of 45 at % or more and 80 at % or less and the metal Pt in an amount of 20 at % or more and 55 at % or less relative to a total of metal components of the each of the in-plane magnetized films. A total thickness of the plurality of in-plane magnetized films is 30 nm or more.
    Type: Application
    Filed: April 28, 2021
    Publication date: June 1, 2023
    Applicant: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Ryousuke KUSHIBIKI, Kim Kong THAM, Tomonari KAMADA
  • Publication number: 20220383901
    Abstract: Provided is a sputtering target to be used for forming a granular magnetic thin film in which FePt magnetic grains are isolated by an oxide and which constitutes a heat-assisted magnetic recording medium having enhanced uniaxial magnetic anisotropy, thermal stability, and SNR (signal-to-noise ratio). The sputtering target for a heat-assisted magnetic recording medium contains an FePt alloy and a nonmagnetic material as main components, where the nonmagnetic material is an oxide having a melting point of 800° C. or higher and 1100° C. or lower.
    Type: Application
    Filed: October 27, 2020
    Publication date: December 1, 2022
    Inventors: Kim Kong Tham, Ryousuke Kushibiki, Shin Saito, Takashi Saito
  • Publication number: 20220122635
    Abstract: Provided is a perpendicular magnetic recording medium that exhibits improved thermal stability and achieves reduction in switching magnetic field by providing a cap layer having characteristics (characteristics contributing to reducing switching magnetic field of the perpendicular magnetic recording medium as well as to improving thermal stability thereof) superior to existing cap layers. A perpendicular magnetic recording layer (24) has a granular structure which comprises Co- Pt-alloy magnetic crystal grains (24A) and a non-magnetic grain boundary oxide (24B). A cap layer (26) has a granular structure which comprises Co-Pt-alloy magnetic crystal grains (26A) and a magnetic grain boundary oxide (26B). The Co- Pt -alloy magnetic crystal grains (26A) in the cap layer (26) contain 65-90 at % of Co and 10-35 at % of Pt. The magnetic grain boundary oxide (26B) is included in a volume fraction of 5-40 vol % with respect to the total volume of the cap layer (26).
    Type: Application
    Filed: December 23, 2019
    Publication date: April 21, 2022
    Applicants: TANAKA KIKINZOKU KOGYO K.K., TOHOKU UNIVERSITY
    Inventors: Kim Kong THAM, Tomonari KAMADA, Ryousuke KUSHIBIKI, Shin SAITO
  • Publication number: 20210391105
    Abstract: A CoPt-oxide-based in-plane magnetized film having a magnetic coercive force of 2.00 kOe or more and remanent magnetization per unit area Mrt of 2.00 memu/cm2 or more. The in-plane magnetized film for use as a hard bias layer of a magnetoresistive element contains metal Co, metal Pt, and an oxide. The in-plane magnetized film contains the metal Co in an amount of 55 at % or more and less than 95 at % and the metal Pt in an amount of more than 5 at % and 45 at % or less relative to a total of metal components of the in-plane magnetized film, and contains the oxide in an amount of 10 vol % or more and 42 vol % or less relative to a whole amount of the in-plane magnetized film. The in-plane magnetized film has a thickness of 20 nm or more and 80 nm or less.
    Type: Application
    Filed: October 30, 2019
    Publication date: December 16, 2021
    Applicant: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kim Kong THAM, Ryousuke KUSHIBIKI, Masahiro AONO, Yasunobu WATANABE
  • Publication number: 20210269911
    Abstract: Provided is a sputtering target with which it is possible to form a magnetic thin film having a high coercive force Hc. The sputtering target is a sputtering target that contains metallic Co, metallic Pt, and an oxide, wherein the sputtering target contains no metallic Cr except inevitable impurities, the oxide is B2O3 and the sputtering target comprises 10 to 50 vol % of the oxide.
    Type: Application
    Filed: May 13, 2021
    Publication date: September 2, 2021
    Inventors: Kim Kong Tham, Ryousuke Kushibiki, Toshiya Yamamoto, Shin Saito, Shintaro Hinata
  • Publication number: 20210242000
    Abstract: For a further high capacity, provided is a sputtering target for a magnetic recording medium that can form a magnetic thin film having enhanced uniaxial magnetic anisotropy, reduced intergranular exchange coupling, and improved thermal stability and SNR (signal-to-noise ratio). The sputtering target for a magnetic recording medium, comprises: a metal phase containing Pt and at least one or more selected from Cu and Ni, with the balance being Co and incidental impurities; and an oxide phase containing at least B2O3.
    Type: Application
    Filed: July 25, 2019
    Publication date: August 5, 2021
    Inventors: Tomonari Kamada, Ryousuke Kushibiki, Kim Kong Tham, Shin Saito
  • Patent number: 11072851
    Abstract: Provided is a sputtering target with which it is possible to form a magnetic thin film having a high coercive force Hc. The sputtering target is a sputtering target that contains metallic Co, metallic Pt, and an oxide, wherein the sputtering target contains no metallic Cr except inevitable impurities, the oxide has B2O3, and the sputtering target comprises 10 to 50 vol % of the oxide.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: July 27, 2021
    Assignees: TANAKA KIKINZOKU KOGYO K.K., TOHOKU UNIVERSITY
    Inventors: Kim Kong Tham, Ryousuke Kushibiki, Toshiya Yamamoto, Shin Saito, Shintaro Hinata
  • Patent number: 10971181
    Abstract: A sputtering target for magnetic recording media capable of producing a magnetic thin film in which the magnetic crystal grains are micronized and the distance between the centers of the grains is reduced while good magnetic properties are maintained. The target including metallic Pt and an oxide, with the balance being metallic Co and inevitable impurities, wherein the Co is contained in a range of 70 at % to 90 at % and the Pt is contained in a range of 10 at % to 30 at % relative to a total of metallic components in the sputtering target for magnetic recording media, the oxide is contained in a range of 26 vol % to 40 vol % relative to a total volume of the sputtering target for magnetic recording media, and the oxide is composed of B2O3 and one or more high-melting-point oxides having a melting point of 1470° C. or higher and 2800° C. or lower.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: April 6, 2021
    Assignees: TANAKA KIKINZOKU KOGYO K.K., TOHOKU UNIVERSITY
    Inventors: Kim Kong Tham, Ryousuke Kushibiki, Toshiya Yamamoto, Shin Saito, Shintaro Hinata
  • Publication number: 20210087673
    Abstract: A sputtering target that can be used for forming a buffer layer that enables magnetic crystal grains in a magnetic recording layer granular film to be well separated when the magnetic recording layer granular film is stacked above a Ru underlayer. The target contains a metal and an oxide, wherein: the contained metal becomes a nonmagnetic metal including an hcp structure if the entirety of the contained metal is made into a single metal, the lattice constant “a” of the hcp structure included in the nonmagnetic metal being 2.59 ? or more and 2.72 ? or less; the contained metal includes 4 at % or more of metallic Ru relative to the whole amount of the contained metal; and the sputtering target contains 20 vol % or more and 50 vol % or less of the oxide relative to the entire sputtering target, the melting point of the contained oxide being 1700° C. or more.
    Type: Application
    Filed: January 17, 2019
    Publication date: March 25, 2021
    Applicants: TANAKA KIKINZOKU KOGYO K.K., TOHOKU UNIVERSITY
    Inventors: Kim Kong THAM, Ryousuke KUSHIBIKI, Tomonari KAMADA, Masahiro AONO, Takeshi ISHIBASHI, Takeshi NUMAZAKI, Shin SAITO
  • Patent number: 10787732
    Abstract: Through the present invention, a thin film containing an FePt-based alloy and carbon, the thin film being capable of being used as a magnetic recording medium, is enabled to be formed using one target, and amount of particles is enabled to be reduced. An FePt—C-based sputtering target containing Fe, Pt, and C, wherein the FePt—C-based sputtering target has a structure in which a C phase substantially being C is dispersed in an FePt-based alloy phase containing 33 mol % or more and 60 mol % or less of Pt with the balance substantially being Fe, an average value of the size indices a of the C phase is 4.0 ?m or more and 9.0 ?m or less, and an average value of the nonspherical indices b of the C phase is 3.0 or more.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 29, 2020
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Yasuyuki Goto, Takamichi Yamamoto, Masahiro Nishiura, Ryousuke Kushibiki
  • Publication number: 20200105297
    Abstract: A sputtering target for magnetic recording media capable of producing a magnetic thin film in which the magnetic crystal grains are micronized and the distance between the centers of the grains is reduced while good magnetic properties are maintained. The target including metallic Pt and an oxide, with the balance being metallic Co and inevitable impurities, wherein the Co is contained in a range of 70 at % to 90 at % and the Pt is contained in a range of 10 at % to 30 at % relative to a total of metallic components in the sputtering target for magnetic recording media, the oxide is contained in a range of 26 vol % to 40 vol % relative to a total volume of the sputtering target for magnetic recording media, and the oxide is composed of B2O3 and one or more high-melting-point oxides having a melting point of 1470° C. or higher and 2800° C. or lower.
    Type: Application
    Filed: October 11, 2017
    Publication date: April 2, 2020
    Applicants: TANAKA KIKINZOKU KOGYO K.K., TOHOKU UNIVERSITY
    Inventors: Kim Kong THAM, Ryousuke KUSHIBIKI, Toshiya YAMAMOTO, Shin SAITO, Shintaro HINATA
  • Publication number: 20190292650
    Abstract: Through the present invention, a thin film containing an FePt-based alloy and carbon, the thin film being capable of being used as a magnetic recording medium, is enabled to be formed using one target, and amount of particles is enabled to be reduced. An FePt—C-based sputtering target containing Fe, Pt, and C, wherein the FePt—C-based sputtering target has a structure in which a C phase substantially being C is dispersed in an FePt-based alloy phase containing 33 mol % or more and 60 mol % or less of Pt with the balance substantially being Fe, an average value of the size indices a of the C phase is 4.0 ?m or more and 9.0 ?m or less, and an average value of the nonspherical indices b of the C phase is 3.0 or more.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 26, 2019
    Inventors: Yasuyuki GOTO, Takamichi YAMAMOTO, Masahiro NISHIURA, Ryousuke KUSHIBIKI
  • Patent number: 10186404
    Abstract: An FePt—C-based sputtering target containing Fe, Pt, and C, wherein the FePt—C-based sputtering target has a structure in which primary particles of C that contain unavoidable impurities are dispersed in an FePt-based alloy phase containing 33 at % or more and 60 at % or less of Pt with the balance being Fe and unavoidable impurities, the primary particles of C being dispersed so as not to be in contact with each other.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 22, 2019
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Yasuyuki Goto, Takamichi Yamamoto, Masahiro Nishiura, Ryousuke Kushibiki
  • Publication number: 20180355473
    Abstract: Provided is a sputtering target with which it is possible to form a magnetic thin film having a high coercive force Hc. The sputtering target is a sputtering target that contains metallic Co, metallic Pt, and an oxide, wherein the sputtering target contains no metallic Cr except inevitable impurities, the oxide has B2O3 and the sputtering target comprises 10 to 50 vol % of the oxide.
    Type: Application
    Filed: November 15, 2016
    Publication date: December 13, 2018
    Inventors: Kim Kong THAM, Ryousuke KUSHIBIKI, Toshiya YAMAMOTO, Shin SAITO, Shintaro HINATA
  • Patent number: 9358612
    Abstract: An FePt-based sputtering target contains Fe, Pt, and a metal oxide, and further contains one or more kinds of metal elements other than Fe and Pt, wherein the FePt-based sputtering target has a structure in which an FePt-based alloy phase and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and less than 60 at % and the one or more kinds of metal elements in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with the total amount of Pt and the one or more kinds of metal elements being 60 at % or less, and wherein the metal oxide is contained in an amount of 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: June 7, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9314845
    Abstract: A process for producing an FePt-based sputtering target includes adding C powder containing unavoidable impurities and metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities so that the C powder and the metal oxide powder are contained to satisfy: 0<??20; 10??<40; and 20??+??40, where ? and ? represent contents of the C powder and the metal oxide powder by vol %, respectively, based on a total amount of the FePt-based alloy powder, the C powder, and the metal oxide powder, followed by mixing the FePt-based alloy powder, the C powder, and the metal oxide powder to produce a powder mixture.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: April 19, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9314846
    Abstract: A process for producing an FePt-based sputtering target includes adding metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and less than 60 at % and one or more kinds of metal elements other than Fe and Pt in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with a total amount of Pt and the one or more kinds of metal elements being 60 at % or less so that the metal oxide powder accounts for 20 vol % or more and 40 vol % or less of a total amount of the FePt-based alloy powder and the metal oxide powder, followed by mixing the FePt-based alloy powder and the metal oxide powder to produce a powder mixture.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: April 19, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura