Patents by Inventor Rytis Dargis

Rytis Dargis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10923345
    Abstract: Systems and methods are described herein for growing epitaxial metal oxide as buffer for epitaxial III-V layers. A layer structure includes a base layer and a first rare earth oxide layer epitaxially grown over the base layer. The first rare earth oxide layer includes a first rare earth element and oxygen, and has a bixbyite crystal structure. The layer structure also includes a metal oxide layer epitaxially grown directly over the first rare earth oxide layer. The metal oxide layer includes a first cation element selected from Group III and oxygen, and has a bixbyite crystal structure.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: February 16, 2021
    Assignee: IQE plc
    Inventors: Rytis Dargis, Andrew Clark, Rodney Pelzel
  • Publication number: 20210005720
    Abstract: Layered structures described herein include electronic devices with 2-dimensional electron gas between polar-oriented cubic rare-earth oxide layers on a non-polar semiconductor. Layered structure includes a semiconductor device, comprising a III-N layer or rare-earth layer, a polar rare-earth oxide layer grown over the III-N layer or rare-earth layer, a gate terminal deposited or grown over the polar rare-earth oxide layer, a source terminal that is deposited or epitaxially grown over the layer, and a drain terminal that is deposited or grown over the layer.
    Type: Application
    Filed: February 15, 2019
    Publication date: January 7, 2021
    Inventors: Rytis Dargis, Andrew Clark, Richard Hammond, Rodney Pelzel, Michael Lebby
  • Publication number: 20200388489
    Abstract: Structures having an epitaxial metal layer, a semiconductor layer, or both, may be formed as part of a first process in a first chamber, and then undergo subsequent processing in a second chamber. A modified device may be formed from a pre-formed device by application of further layers in a second process. One or more layers may be formed directly over the device, formed directly over a seed layer formed over the device, or formed over a substrate that is subsequently bonded and partially cleaved from the device. A seed layer may include a lattice constant transition, chemical transition, or other suitable transition between the device and an epitaxial layer. A cleave layer may include a porous layer configured to fracture at a relatively lower shear loading than the rest of the structure, thus providing a predictable separation plane.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 10, 2020
    Inventors: Rodney Pelzel, Andrew Clark, Rytis Dargis
  • Patent number: 10825912
    Abstract: Systems and methods are described herein to include an epitaxial metal layer between a rare earth oxide and a semiconductor layer. Systems and methods are described to grow a layered structure, comprising a substrate, a first rare earth oxide layer epitaxially grown over the substrate, a first metal layer epitaxially grown over the rare earth oxide layer, and a first semiconductor layer epitaxially grown over the first metal layer.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 3, 2020
    Assignee: IQE plc
    Inventors: Rodney Pelzel, Andrew Clark, Rytis Dargis, Patrick Chin, Michael Lebby
  • Publication number: 20200266276
    Abstract: A layered structure for semiconductor application is described herein. The layered structure includes III-V semiconductor and uses pnictide nanocomposites to control lattice distortion in a series of layers. The distortion is tuned to bridge lattice mismatch between binary III-V semiconductors. In some embodiments, the layered structure further includes dislocation filters.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 20, 2020
    Inventors: Andrew Clark, Rodney Pelzel, Mukul Debnath, Rytis Dargis, Robert Yanka
  • Publication number: 20200168454
    Abstract: Systems and methods are described herein for growing epitaxial metal oxide as buffer for epitaxial III-V layers. A layer structure includes a base layer and a first rare earth oxide layer epitaxially grown over the base layer. The first rare earth oxide layer includes a first rare earth element and oxygen, and has a bixbyite crystal structure. The layer structure also includes a metal oxide layer epitaxially grown directly over the first rare earth oxide layer. The metal oxide layer includes a first cation element selected from Group III and oxygen, and has a bixbyite crystal structure.
    Type: Application
    Filed: March 16, 2017
    Publication date: May 28, 2020
    Inventors: Rytis Dargis, Andrew Clark, Rodney Pelzel
  • Publication number: 20200161417
    Abstract: In view of the high-temperature issues in III-N layer growth process, embodiments described herein use layered structure including a rare earth oxide (REO) or rare earth nitride (REN) buffer layer and a polymorphic III-N-RE transition layer to transit from a REO layer to a III-N layer. In some embodiments, the piezoelectric coefficient of III-N layer is increased by introduction of additional strain in the layered structure. The polymorphism of RE-III-N nitrides can then be used for lattice matching with the III-N layer.
    Type: Application
    Filed: November 19, 2019
    Publication date: May 21, 2020
    Inventors: Rytis Dargis, Andrew Clark, Rodney Pelzel, Michael Lebby, Robert Yanka
  • Patent number: 10615141
    Abstract: A structure can include a III-N layer with a first lattice constant, a first rare earth pnictide layer with a second lattice constant epitaxially grown over the III-N layer, a second rare earth pnictide layer with a third lattice constant epitaxially grown over the first rare earth pnictide layer, and a semiconductor layer with a fourth lattice constant epitaxially grown over the second rare earth pnictide layer. A first difference between the first lattice constant and the second lattice constant and a second difference between the third lattice constant and the fourth lattice constant are less than one percent.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 7, 2020
    Assignee: IQE plc
    Inventors: Andrew Clark, Rytis Dargis, Michael Lebby, Rodney Pelzel
  • Patent number: 10605987
    Abstract: Systems and methods describe growing RE-based integrated photonic and electronic layered structures on a single substrate. The layered structure comprises a substrate, an epi-twist rare earth oxide layer over a first region of the substrate, and a rare earth pnictide layer over a second region of the substrate, wherein the first region and the second region are non-overlapping.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 31, 2020
    Assignee: IQE plc
    Inventors: Andrew Clark, Rich Hammond, Rytis Dargis, Michael Lebby, Rodney Pelzel
  • Patent number: 10573686
    Abstract: Proposed is a layer structure (1100, 1030) comprising a crystalline piezoelectric III-N layer (1110, 1032) epitaxially grown over a metal layer which is epitaxially grown over a rare earth oxide layer on a semiconductor (1102, 1002). The rare earth oxide layer includes at least two discrete portions (1104, 1004), and the metal layer includes at least one metal portion (1108, 1006) that partially overlaps adjacent discrete portions, preferably forming a bridge over an air gap (1008), particularly suitable for RF filters.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: February 25, 2020
    Assignee: IQE plc
    Inventors: Wang Nang Wang, Andrew Clark, Rytis Dargis, Michael Lebby, Rodney Pelzel
  • Patent number: 10566944
    Abstract: Layer structures for RF filters can be fabricated using rare earth oxides and epitaxial aluminum nitride, and methods for growing the layer structures. A layer structure can include an epitaxial crystalline rare earth oxide (REO) layer over a substrate, a first epitaxial electrode layer over the crystalline REO layer, and an epitaxial piezoelectric layer over the first epitaxial electrode layer. The layer structure can further include a second electrode layer over the epitaxial piezoelectric layer. The first electrode layer can include an epitaxial metal. The epitaxial metal can be single-crystal. The first electrode layer can include one or more of a rare earth pnictide, and a rare earth silicide (RESi).
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: February 18, 2020
    Assignee: IQE plc
    Inventors: Rodney Pelzel, Rytis Dargis, Andrew Clark, Howard Williams, Patrick Chin, Michael Lebby
  • Publication number: 20190305039
    Abstract: Proposed is a layer structure (1100, 1030) comprising a crystalline piezoelectric III-N layer (1110, 1032) epitaxially grown over a metal layer which is epitaxially grown over a rare earth oxide layer on a semiconductor (1102, 1002). The rare earth oxide layer includes at least two discrete portions (1104, 1004), and the metal layer includes at least one metal portion (1108, 1006) that partially overlaps adjacent discrete portions, preferably forming a bridge over an air gap (1008), particularly suitable for RF filters.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 3, 2019
    Applicant: IQE plc.
    Inventors: Wang Nang Wang, Andrew Clark, Rytis Dargis, Michael Lebby, Rodney Pelzel
  • Patent number: 10418457
    Abstract: The structures and methods disclosed herein include changing composition of a metal alloy layer in an epitaxial electrode material to achieve tunable work functions for the electrode. In one example, the tunable work function is achieved using a layered structure, in which a crystalline rare earth oxide (REO) layer is epitaxially over a substrate or semiconductor, and a metal layer is over the crystalline REO layer. A semiconductor layer is thus in turn epitaxially grown over the metal layer, with a metal alloy layer over the semiconductor layer such that the ratio of constituents in the metal alloy is used to tune the work function of the metal layer.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: September 17, 2019
    Assignee: IQE plc
    Inventors: Rytis Dargis, Richard Hammond, Andrew Clark, Rodney Pelzel
  • Publication number: 20190227233
    Abstract: Systems and methods describe growing RE-based integrated photonic and electronic layered structures on a single substrate. The layered structure comprises a substrate, an epi-twist rare earth oxide layer over a first region of the substrate, and a rare earth pnictide layer over a second region of the substrate, wherein the first region and the second region are non-overlapping.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 25, 2019
    Inventors: Andrew Clark, Rich Hammond, Rytis Dargis, Michael Lebby, Rodney Pelzel
  • Patent number: 10332857
    Abstract: Systems and methods described herein may include a first semiconductor layer with a first lattice constant, a rare earth pnictide buffer epitaxially grown over the first semiconductor, wherein a first region of the rare earth pnictide buffer adjacent to the first semiconductor has a net strain that is less than 1%, a second semiconductor layer epitaxially grown over the rare earth pnictide buffer, wherein a second region of the rare earth pnictide buffer adjacent to the second semiconductor has a net strain that is a desired strain, and wherein the rare earth pnictide buffer may comprise one or more rare earth elements and one or more Group V elements. In some examples, the desired strain is approximately zero.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: June 25, 2019
    Assignee: IQE plc
    Inventors: Andrew Clark, Rytis Dargis, Michael Lebby, Rodney Pelzel
  • Publication number: 20190172923
    Abstract: Systems and methods are described herein to include an epitaxial metal layer between a rare earth oxide and a semiconductor layer. Systems and methods are described to grow a layered structure, comprising a substrate, a first rare earth oxide layer epitaxially grown over the substrate, a first metal layer epitaxially grown over the rare earth oxide layer, and a first semiconductor layer epitaxially grown over the first metal layer. Specifically, the substrate may include a porous portion, which is usually aligned with the metal layer, with or without a rare earth oxide layer in between.
    Type: Application
    Filed: January 25, 2019
    Publication date: June 6, 2019
    Inventors: Rodney Pelzel, Andrew Clark, Rytis Dargis, Patrick Chin, Michael Lebby
  • Publication number: 20190139761
    Abstract: A structure can include a III-N layer with a first lattice constant, a first rare earth pnictide layer with a second lattice constant epitaxially grown over the III-N layer, a second rare earth pnictide layer with a third lattice constant epitaxially grown over the first rare earth pnictide layer, and a semiconductor layer with a fourth lattice constant epitaxially grown over the second rare earth pnictide layer. A first difference between the first lattice constant and the second lattice constant and a second difference between the third lattice constant and the fourth lattice constant are less than one percent.
    Type: Application
    Filed: June 2, 2017
    Publication date: May 9, 2019
    Inventors: Andrew Clark, Rytis Dargis, Michael Lebby, Rodney Pelzel
  • Publication number: 20190122885
    Abstract: Layer structures are described for the formation of Group III-V semiconductor material over Si<110> and Si<100>. Various buffer layers and interfaces reduce the lattice strain between the Group III-V semiconductor material and the Si<110> or Si<100> layers, allowing for the epitaxial formation of high quality Group III-V semiconductor material.
    Type: Application
    Filed: April 10, 2017
    Publication date: April 25, 2019
    Inventors: Rytis Dargis, Andrew Clark, Michael Lebby, Rodney Pelzel
  • Publication number: 20190074365
    Abstract: Systems and methods are described herein to include an epitaxial metal layer between a rare earth oxide and a semiconductor layer. Systems and methods are described to grow a layered structure, comprising a substrate, a first rare earth oxide layer epitaxially grown over the substrate, a first metal layer epitaxially grown over the rare earth oxide layer, and a first semiconductor layer epitaxially grown over the first metal layer.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 7, 2019
    Inventors: Rodney Pelzel, Andrew Clark, Rytis Dargis, Patrick Chin, Michael Lebby
  • Publication number: 20190027574
    Abstract: The structures and methods disclosed herein include changing composition of a metal alloy layer in an epitaxial electrode material to achieve tunable work functions for the electrode. In one example, the tunable work function is achieved using a layered structure, in which a crystalline rare earth oxide (REO) layer is epitaxially over a substrate or semiconductor, and a metal layer is over the crystalline REO layer. A semiconductor layer is thus in turn epitaxially grown over the metal layer, with a metal alloy layer over the semiconductor layer such that the ratio of constituents in the metal alloy is used to tune the work function of the metal layer.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Inventors: Rytis Dargis, Richard Hammond, Andrew Clark, Rodney Pelzel