Patents by Inventor Ryuji Ando

Ryuji Ando has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130076055
    Abstract: A robot hand and a robot according to an embodiment include supporting units. The supporting units are arranged on a base and contact the peripheral border of a board to grip the board. At least one of the supporting units rotates while abutting on the peripheral border of the board.
    Type: Application
    Filed: March 8, 2012
    Publication date: March 28, 2013
    Applicant: KABUSHIKI KAISHA YASKAWA DENKI
    Inventors: Kazunori HINO, Ryuji Ando, Katsuhiko Shimada
  • Publication number: 20120328499
    Abstract: The selective reduction-type catalyst (SROC) has a lower catalyst layer (A) and an upper catalyst layer (B) at the surface of an integral structure-type carrier (C). the lower catalyst layer (A) contains the following components (i) a noble metal component, component (ii) alumina, titania, silica, zirconia, tungsten oxide, a transition metal oxide, a rare earth oxide, and a complex oxide thereof, and component (iii) zeolite. The upper catalyst layer (B) does not substantially contain the following component (i) and contains the following component (iii). The component (i) of the lower catalyst layer (A1) of the selective reduction-type catalyst (SROC1) at the forward stage contains a platinum component of 90% by weight or more in metal equivalent. The component (i) of the lower catalyst layer (A2) of the selective reduction-type catalyst (SROC2) at the backward stage contains a palladium component of 40% or more in metal equivalent.
    Type: Application
    Filed: May 17, 2011
    Publication date: December 27, 2012
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Ryuji Ando, Yasuharu Kanno, Makoto Nagata
  • Patent number: 7906449
    Abstract: The present invention is a selective catalytic reduction type catalyst for purifying nitrogen oxides in exhaust gas exhausted from lean combustion engines using ammonia or urea as a reducing agent, it is provided with a selective catalytic reduction type catalyst The catalyst comprises a lower-layer catalyst layer (A) having an oxidative function for nitrogen monoxide (NO) in exhaust gas and an upper-layer catalyst layer (B) having an adsorbing function for ammonia on the surface of a monolithic structure type carrier (C), and that the lower-layer catalyst layer (A) comprises a noble metal component (i), an inorganic base material constituent (ii) and zeolite (iii), and the upper-layer catalyst layer (B) comprises substantially none of component (i) but the component (iii).
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: March 15, 2011
    Assignee: N.E. Chemcat Corporation
    Inventors: Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Publication number: 20100196221
    Abstract: The present invention is an exhaust gas purification catalyst equipment, and a method of use thereof, formed by arranging a selective catalytic reduction type catalyst for purifying nitrogen oxides in exhaust gas exhausted from lean combustion engines using ammonia or urea as a reducing agent, it is provided with a selective catalytic reduction type catalyst, characterized in that said catalyst comprises a lower-layer catalyst layer (A) having an oxidative function for nitrogen monoxide (NO) in exhaust gas and an upper-layer catalyst layer (B) having an adsorbing function for ammonia on the surface of a monolithic structure type carrier (C), and that the lower-layer catalyst layer (A) comprises a noble metal component (i), an inorganic base material constituent (ii) and zeolite (iii), and the upper-layer catalyst layer (B) comprises substantially none of component (i) but the component (iii), in a flow path of exhaust gas, characterized in that a spraying means to supply an urea aqueous solution or an aqueous
    Type: Application
    Filed: April 1, 2010
    Publication date: August 5, 2010
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Publication number: 20100143223
    Abstract: A denitrification catalyst and a honeycomb structure type denitrification catalyst which are used for efficiently removing nitrogen oxides through reduction from exhaust gases discharged from, e.g., boilers and internal combustion engines such as a gasoline engine and diesel engine; and a method of denitrification using either of these catalysts. The denitrification catalyst is for use in reducing nitrogen oxides contained in an exhaust gas with an ammonia source and comprises zeolite as the main ingredient, and is characterized in that not only iron element and cerium element but tin element and/or gallium element has been deposited on the zeolite. The honeycomb structure type denitrification catalyst comprises the denitrification catalyst and a honeycomb structure support whose surface has been covered therewith.
    Type: Application
    Filed: November 28, 2006
    Publication date: June 10, 2010
    Applicant: N.E. Chemcat Corporation
    Inventors: Ryuji Ando, Yasuharu Kanno, Makoto Nagata
  • Publication number: 20090269265
    Abstract: An exhaust gas purification method which is capable of purifying nitrogen oxide to be included in exhaust gas from a lean burn engine such as a boiler, a gas turbine or a lean-burn-type gasoline engine, a diesel engine, effectively, in particular, even at low temperature, with spray-supplying an aqueous solution of urea as the reducing component to the selective reduction catalyst. The exhaust gas purification method for reducing selectively NOx in exhaust gas, which is exhausted from a lean burn engine, with a selective reduction catalyst and ammonia, characterized in that an aqueous solution of urea is spray-supplied to the selective reduction catalyst, comprising at least the following zeolite (A) and the hydrolysis promotion component of urea (B), and it is contacted at 150 to 600° C., and ammonia is generated in a ratio of [NH3/NOx=0.5 to 1.5] to NOx in exhaust gas, as converted to ammonia, and a nitrogen oxide is decomposed into nitrogen and water.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 29, 2009
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Publication number: 20080286184
    Abstract: The present invention relates to a technology to purify nitrogen oxides contained in exhaust gas exhausted from lean combustion engines such as diesel engine with ammonia and a selective catalytic reduction type catalyst, and an object of the present invention is to provide a selective catalytic reduction type catalyst which can effectively purify nitrogen oxides even at a low temperature as well as inhibit leak of ammonia, and an exhaust gas purification equipment and a purifying process of exhaust gas using the same.
    Type: Application
    Filed: May 5, 2008
    Publication date: November 20, 2008
    Applicant: N.E CHEMCAT CORPORATION
    Inventors: Ryuji Ando, Takashi Hihara, Yasuharu Kanno, Makoto Nagata
  • Publication number: 20080271441
    Abstract: The present invention provides an exhaust gas purification catalyst for automobile which is capable of raising temperature of exhaust gas exhausted from combustion engines such as diesel engine cars and converting NO in the exhaust gas to NO2, in addition, an exhaust gas purification catalyst system to purify soot, soluble organic component and NOx component exhausted from diesel engines, and a purifying process of exhaust gas. The present invention is an exhaust gas purification catalyst composition to oxidize NO in automobile exhaust gas comprising a catalyst composition in which a noble metal catalyst component (A) is supported on a heat-resistant inorganic oxide (B), and an exhaust gas purification catalyst composition etc. for automobile characterized in that the noble metal catalyst component (A) comprises platinum (Pt) existing in a state of elemental substance in the catalyst composition and platinum-palladium (Pt—Pd) existing in a state of alloy in the catalyst composition are provided.
    Type: Application
    Filed: April 25, 2008
    Publication date: November 6, 2008
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Makoto Nagata, Yasuharu Kanno, Ryuji Ando