Patents by Inventor Ryuji Aono

Ryuji Aono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8289013
    Abstract: This disclosure concerns a speed detector sampling coordinates showing the position of a moving body and detecting the speed thereof includes a memory storing preset tentative angles and the values of a trigonometric function corresponding to the tentative angles; a first register storing the first coordinates of the moving body obtained by a first sampling; a second register storing the actual second coordinates of the moving body obtained by a second sampling subsequent to the first sampling; and an arithmetic operation unit calculating second coordinates in calculation, which are shown by multiplication, addition, or subtraction of the first coordinates and the values of the trigonometric function, to approximate the second coordinates in calculation to the actual second coordinates, the arithmetic operation unit calculating the speed of the moving body based on the tentative angle corresponding to the value of the trigonometric function used to the second coordinates in calculation.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: October 16, 2012
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventor: Ryuji Aono
  • Patent number: 8219603
    Abstract: This disclosure concerns a waveform corrector comprising a first portion calculating an offset value of an intermediate value between a maximum value and a minimum value of a signal with respect to a reference value; a second portion calculating an actual amplitude of the signal by subtracting the offset value from the maximum value or the minimum value; a third portion generating a first correction signal by subtracting the offset value from the digital signal; a fourth portion subtracting a value obtained by shifting a figure of the actual amplitude from the actual amplitude so that the actual amplitude converges into a reference amplitude; and a fifth portion subtracting a value obtained by shifting the first correction signal by an amount identical to a shift amount of the actual amplitude from the first correction signal so that the first correction signal converges into a second correction signal.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: July 10, 2012
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventor: Ryuji Aono
  • Patent number: 8000414
    Abstract: This disclosure concerns an amplitude detector comprising: a maximum-minimum detector detecting a maximum and a minimum values of a digital signals; a first and a second lowpass filters respectively having a cutoff frequency lower than a frequency of the waveform signal; a cycle detector detecting a cycle of the waveform signal; a correction coefficient generator generating a numeric value of a correction coefficient expressed by a calculation with respect to the cycle of the waveform signal and a cycle of the sampling; a first multiplier generating a corrected maximum value by multiplying the maximum value of the digital signals by the correction coefficient; a second multiplier generating a corrected minimum value by multiplying the minimum value of the digital signals by the correction coefficient; and an output portion outputting the corrected maximum value or an absolute value of the corrected minimum value as the amplitude of the waveform signal.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: August 16, 2011
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventor: Ryuji Aono
  • Patent number: 7668689
    Abstract: This disclosure concerns a velocity detector comprises a memory storing preset tentative angles and a trigonometric function value corresponding to each of the preset tentative angles; a first register storing a first coordinate (x1, y1) of a body; a second register storing a second actual coordinate (x2, y2) of the body; a first calculator calculating a first calculational coordinate represented by an addition or a subtraction between x1 and a result of shifting a figure of y1 based on the trigonometric function value; a second calculator calculating a second calculation coordinate represented by the addition or the subtraction between y2 and a result of shifting a figure of x2 based on the trigonometric function value, wherein the first and the second calculators calculate the first and second calculational coordinates respectively so that the first actual coordinate (x1, y1) and the second actual coordinate (x2, y2) are closer to each other.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: February 23, 2010
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventor: Ryuji Aono
  • Patent number: 7541763
    Abstract: A servo control device includes a current supply unit for supplying a drive unit with a drive current for driving a target to be controlled; a first detector for detecting at least the drive current value; and a logical arithmetic section which introduces a current command determining the drive current for controlling the drive speed of the drive unit to move the target to be controlled to a predetermined position, and which introduces the drive current value fed back from the first detector. The logical arithmetic section outputs the current command to the current supply unit after correcting the current command by a digital logic process on the basis of the drive current value.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: June 2, 2009
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventors: Ryuji Aono, Naomi Kobayashi, Takeshi Iida, Takamichi Ito
  • Publication number: 20080215661
    Abstract: This disclosure concerns a waveform corrector comprising a first portion calculating an offset value of an intermediate value between a maximum value and a minimum value of a signal with respect to a reference value; a second portion calculating an actual amplitude of the signal by subtracting the offset value from the maximum value or the minimum value; a third portion generating a first correction signal by subtracting the offset value from the digital signal; a fourth portion subtracting a value obtained by shifting a figure of the actual amplitude from the actual amplitude so that the actual amplitude converges into a reference amplitude; and a fifth portion subtracting a value obtained by shifting the first correction signal by an amount identical to a shift amount of the actual amplitude from the first correction signal so that the first correction signal converges into a second correction signal.
    Type: Application
    Filed: January 29, 2008
    Publication date: September 4, 2008
    Inventor: Ryuji AONO
  • Publication number: 20080181338
    Abstract: This disclosure concerns an amplitude detector comprising: a maximum-minimum detector detecting a maximum and a minimum values of a digital signals; a first and a second lowpass filters respectively having a cutoff frequency lower than a frequency of the waveform signal; a cycle detector detecting a cycle of the waveform signal; a correction coefficient generator generating a numeric value of a correction coefficient expressed by a calculation with respect to the cycle of the waveform signal and a cycle of the sampling; a first multiplier generating a corrected maximum value by multiplying the maximum value of the digital signals by the correction coefficient; a second multiplier generating a corrected minimum value by multiplying the minimum value of the digital signals by the correction coefficient; and an output portion outputting the corrected maximum value or an absolute value of the corrected minimum value as the amplitude of the waveform signal.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 31, 2008
    Inventor: RYUJI AONO
  • Publication number: 20080133172
    Abstract: This disclosure concerns a velocity detector comprises a memory storing preset tentative angles and a trigonometric function value corresponding to each of the preset tentative angles; a first register storing a first coordinate (x1, y1) of a body; a second register storing a second actual coordinate (x2, y2) of the body; a first calculator calculating a first calculational coordinate represented by an addition or a subtraction between x1 and a result of shifting a figure of y1 based on the trigonometric function value; a second calculator calculating a second calculation coordinate represented by the addition or the subtraction between y2 and a result of shifting a figure of x2 based on the trigonometric function value, wherein the first and the second calculators calculate the first and second calculational coordinates respectively so that the first actual coordinate (x1, y1) and the second actual coordinate (x2, y2) are closer to each other.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 5, 2008
    Applicant: TOSHIBA KIKAI KABUSHIKI KAISHA
    Inventor: RYUJI AONO
  • Publication number: 20070198200
    Abstract: This disclosure concerns a speed detector sampling coordinates showing the position of a moving body and detecting the speed thereof includes a memory storing preset tentative angles and the values of a trigonometric function corresponding to the tentative angles; a first register storing the first coordinates of the moving body obtained by a first sampling; a second register storing the actual second coordinates of the moving body obtained by a second sampling subsequent to the first sampling; and an arithmetic operation unit calculating second coordinates in calculation, which are shown by multiplication, addition, or subtraction of the first coordinates and the values of the trigonometric function, to approximate the second coordinates in calculation to the actual second coordinates, the arithmetic operation unit calculating the speed of the moving body based on the tentative angle corresponding to the value of the trigonometric function used to the second coordinates in calculation.
    Type: Application
    Filed: August 17, 2006
    Publication date: August 23, 2007
    Applicant: TOSHIBA KIKAI KABUSHIKI KAISHA
    Inventor: Ryuji AONO
  • Publication number: 20060061318
    Abstract: A servo control device 10 connected to servo motors 21 to control them includes a digital logic circuit 11 having a predetermined bit width. The digital logic circuit 11 includes at least one pair of parallel arithmetical circuits 11a, 11b.
    Type: Application
    Filed: November 14, 2005
    Publication date: March 23, 2006
    Applicant: Toshiba Kikai Kabushiki Kaisha
    Inventors: Ryuji Aono, Naomi Kobayashi, Takeshi Iida, Takamichi Ito
  • Patent number: 7002315
    Abstract: A servo control device comprises a current supply unit for supplying a drive unit with a drive current for driving a target to be controlled, a first detector for detecting at least the drive current value, and a logical arithmetic section. The logical arithmetic section introduces a current command determining the drive current for controlling the drive speed of the drive unit to move the target to a predetermined position, and introduces the drive current value fed back from the first detector. The logical arithmetic section outputs the current command to the current supply unit after converting the current command by a digital logic process on the basis of the drive current value by using a custom LSI.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: February 21, 2006
    Assignee: Toshiba Kikai Kabushiki Kaisha
    Inventors: Ryuji Aono, Naomi Kobayashi, Takeshi Iida, Takamichi Ito
  • Publication number: 20030222615
    Abstract: A servo control device 10 connected to servo motors 21 to control them includes a digital logic circuit 11 having a predetermined bit width. The digital logic circuit 11 includes at least one pair of parallel arithmetical circuits 11a, 11b.
    Type: Application
    Filed: May 16, 2003
    Publication date: December 4, 2003
    Applicant: TOSHIBA KIKAI KABUSHIKI KAISHA
    Inventors: Ryuji Aono, Naomi Kobayashi, Takeshi Iida, Takamichi Ito