Patents by Inventor Ryuji TAKENAKA

Ryuji TAKENAKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190383222
    Abstract: A gas turbine control device includes a first estimation unit configured to estimate a first temperature which is a turbine inlet temperature estimation value based on a first model which is a physical model using a fuel flow rate to a gas turbine; a second estimation unit configured to estimate a second temperature which is a turbine inlet temperature estimation value based on a second model which is a physical model using an exhaust gas temperature of the gas turbine; and a correction unit configured to correct the first temperature on the basis of the second temperature to calculate a turbine inlet temperature estimation value.
    Type: Application
    Filed: February 22, 2018
    Publication date: December 19, 2019
    Inventors: Kazushige TAKAKI, Akihiko SAITO, Ryuji TAKENAKA, Koshiro FUKUMOTO, Yoshifumi IWASAKI
  • Publication number: 20190063335
    Abstract: A gas turbine control device includes a detection value acquisition unit that acquires a detection value of at least one of a supply amount of fuel, pressure of compressed air, and electric power generated by a generator; a flue gas temperature acquisition unit that acquires a flue gas temperature detection value; a combustion gas temperature estimate value calculation unit that calculates a combustion gas temperature estimate value based on the detection value; a correction term acquisition unit that calculates a correction term based on a ratio between the combustion gas temperature estimate value and the flue gas temperature detection value; a corrected combustion gas temperature estimate value calculation unit that corrects the combustion gas temperature estimate value using the correction term to calculate a corrected combustion gas temperature estimate value; and a gas turbine controller that controls the gas turbine based on the corrected combustion gas temperature estimate value.
    Type: Application
    Filed: December 9, 2016
    Publication date: February 28, 2019
    Inventors: Kazushige TAKAKI, Akihiko SAITO, Ryuji TAKENAKA, Yoshifumi IWASAKI, Shinichi YOSHIOKA, Tatsuji TAKAHASHI, Tomohide AKIYAMA
  • Publication number: 20180223743
    Abstract: An IGV opening command value is corrected to calculate an actual opening equivalent value that indicates an approximate value of an actual opening. A temperature estimation value, for a case where a mixture of fuel and in-flowing air is combusted, is calculated using the actual opening equivalent value, atmospheric conditions, and an output from a gas turbine. A fuel distribution command value that indicates distribution of fuel output from a plurality of fuel supply systems is calculated on the basis of the temperature estimation value. The fuel distribution command value and a fuel control signal command value that indicates the total flow rate of fuel to be output to the plurality of fuel supply systems are acquired, and respective valve openings of fuel flow rate regulating valves of the fuel supply systems are calculated on the basis of the fuel distribution command value and the fuel control signal command value.
    Type: Application
    Filed: June 16, 2016
    Publication date: August 9, 2018
    Inventors: Keisuke YAMAMOTO, Takashi SONODA, Ryuji TAKENAKA, Hikaru KATANO, Eiki ANZAWA, Sosuke NAKAMURA, Fuminori FUJII, Shinichi YOSHIOKA
  • Publication number: 20180016983
    Abstract: A state determining device determines a state of a gas turbine connected to an electric generator. The gas turbine includes a compressor that compresses intake air into compression air, a fuel supply device that supplies fuel, a combustor that mixes the compression air supplied from the compressor and the fuel supplied from the fuel supply device and combusts a resultant mixture to generate combustion gas, and a turbine that is rotated with the generated combustion gas.
    Type: Application
    Filed: November 27, 2015
    Publication date: January 18, 2018
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Takashi SONODA, Ryuji TAKENAKA, Sosuke NAKAMURA
  • Publication number: 20170254282
    Abstract: Provided is a control device of a gas turbine including a compressor, a combustor, and a turbine. The control device executes load control of allowing an operation control point for operation control of a gas turbine to vary in response to a load of the gas turbine. The operation of the gas turbine is controlled on the basis of a rated temperature adjustment line for temperature adjustment control of a flue gas temperature at a predetermined load to a rated flue gas temperature at which performance of the gas turbine becomes rated performance, a preceding setting line for setting of the flue gas temperature at the predetermined load to a preceding flue gas temperature that becomes lower in precedence to the rated flue gas temperature, and a limit temperature adjustment line for temperature adjustment control.
    Type: Application
    Filed: June 16, 2015
    Publication date: September 7, 2017
    Inventors: Takashi SONODA, Akihiko SAITO, Yoshifumi IWASAKI, Ryuji TAKENAKA, Kozo TOYAMA, Koji TAKAOKA
  • Publication number: 20170211409
    Abstract: A control device 14 of a gas turbine that compresses a suctioned air with a compressor to obtain compressed air, mixes a fuel supplied from a combustor with the compressed air to burn the fuel and the compressed air to obtain a combustion gas, operates a turbine with the generated combustion gas to rotate a rotor, and discharges the combustion gas that has operated the turbine as a flue gas, the compressor including an inlet guide vane capable of adjusting the degree of opening and provided on an air-suction side, and temperature adjustment control to control the degree of opening of an inlet guide vane being executed along a temperature adjustment line indicating an upper limit temperature of a flue gas temperature defined according to a load of the gas turbine.
    Type: Application
    Filed: June 16, 2015
    Publication date: July 27, 2017
    Inventors: Akihiko SAITO, Takashi SONODA, Yoshifumi IWASAKI, Koji TAKAOKA, Ryuji TAKENAKA, Kozo TOYAMA
  • Publication number: 20160326967
    Abstract: A fuel control device includes a combustion temperature estimation value calculation unit that calculates a temperature estimation value when a mixture of fuel and inflow air is burned using an atmospheric condition, an opening degree command value of a valve that controls the amount of air that is mixed with the fuel and burned, and an output prediction value calculated on the basis of a fuel control signal command value used for calculation of a total fuel flow rate flowing through a plurality of fuel supply systems, a fuel distribution command value calculation unit that calculates a fuel distribution command value indicating a distribution of fuel output from the fuel supply systems based on the temperature estimation value, and outputs the fuel distribution command value, and a valve opening degree calculation unit that calculates each valve opening degree of a fuel flow rate control valve of the fuel supply systems.
    Type: Application
    Filed: February 16, 2015
    Publication date: November 10, 2016
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Keisuke YAMAMOTO, Takashi SONODA, Akihiko SAITO, Fuminori FUJII, Hisashi NAKAHARA, Ryoichi HAGA, Ryuji TAKENAKA, Yoshifumi IWASAKI, Wataru AKIZUKI, Isamu MATSUMI, Naohiro SUMIMURA, Shinichi YOSHIOKA