Patents by Inventor Ryusuke Hasegawa

Ryusuke Hasegawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080212646
    Abstract: A device and method of remote temperature sensing, the device having a temperature sensor placeable on a rotating item utilizing the temperature sensor being a plurality of rectangular shaped amorphous magnetic alloy strips connected magnetically, wherein at least one of the strips has a predetermined ferromagnetic Curie temperature and another strip has a magnetic permeability exceeding 2,000.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 4, 2008
    Applicant: METGLAS, INC.
    Inventors: Daichi Azuma, Ryusuke Hasegawa
  • Publication number: 20080212644
    Abstract: A temperature sensor includes a plurality of rectangular shaped amorphous magnetic alloy strips connected magnetically, wherein at least one of the strips has a predetermined ferromagnetic Curie temperature, and another strip has a magnetic permeability well exceeding 2,000. The temperature sensor may be used in a related remote temperature sensing method wherein the sensor is interrogated by a magnetic field and the temperature sensor's response signal is detected electromagnetically.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 4, 2008
    Applicant: METGLAS, INC.
    Inventors: Ryusuke Hasegawa, Daichi Azuma
  • Patent number: 7320433
    Abstract: A coded marker in a magnetomechanical resonant electronic article identification system, includes a plurality of ductile magnetostrictive elements or strips based on an amorphous magnetic alloy ribbon with improved magnetomechanical resonance performance. The coded marker takes full advantage of the improved magnetomechanical properties, and an electronic article identification system utilizes the coded marker. The improved encodable and decodable marker/identification system is capable of identifying considerably larger number of articles than conventional systems.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: January 22, 2008
    Assignee: Metglas, Inc.
    Inventor: Ryusuke Hasegawa
  • Patent number: 7289013
    Abstract: A bulk amorphous metal inductive device includes a magnetic core having at least one low-loss bulk ferromagnetic amorphous metal magnetic component forming a magnetic circuit having an air therein. The component has a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The device has one or more electrical windings and is easily customized for specialized magnetic applications, e.g. for use as a transformer or inductor in power conditioning electronic circuitry employing switch-mode circuit topologies and switching frequencies ranging from 1 kHz to 200 kHz or more. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful at frequencies of 1 kHz or more.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: October 30, 2007
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Carl E. Kroger, Scott M. Lindquist, Seshu V. Tatikola
  • Patent number: 7205893
    Abstract: A magnetomechanical resonance element or marker strip with facilitated performance based on an amorphous magnetostrictive alloy ribbon is utilized in an electronic article surveillance marker. A curvature along the element's length direction is introduced during ribbon fabrication with a different radius of curvature, which increases the resonance performance with minimal loss in the magneto-mechanical circuit, and more particularly, in a marker utilizing a plurality of resonating elements or marker strips. A marker is fabricated utilizing the resonance element or elements and is utilized in an electronic article surveillance system.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: April 17, 2007
    Assignee: Metglas, Inc.
    Inventors: Ryusuke Hasegawa, John Paul Webb, Auburn Anthony Chestnut, Larry Hill, Ronald Joseph Martis
  • Publication number: 20070080808
    Abstract: A magnetomechanical resonance element or marker strip with facilitated performance based on an amorphous magnetostrictive alloy ribbon is utilized in an electronic article surveillance marker. A curvature along the element's length direction is introduced during ribbon fabrication with a different radius of curvature, which increases the resonance performance with minimal loss in the magneto-mechanical circuit, and more particularly, in a marker utilizing a plurality of resonating elements or marker strips. A marker is fabricated utilizing the resonance element or elements and is utilized in an electronic article surveillance system.
    Type: Application
    Filed: December 4, 2006
    Publication date: April 12, 2007
    Inventors: Ryusuke Hasegawa, John Webb, Auburn Chestnut, Larry Hill, Ronald Martis
  • Publication number: 20070080226
    Abstract: A coded marker in a magnetomechanical resonant electronic article identification system, includes a plurality of ductile magnetostrictive elements or strips based on an amorphous magnetic alloy ribbon with improved magnetomechanical resonance performance. The coded marker takes full advantage of the improved magnetomechanical properties, and an electronic article identification system utilizes the coded marker. The improved encodable and decodable marker/identification system is capable of identifying considerably larger number of articles than conventional systems.
    Type: Application
    Filed: December 4, 2006
    Publication date: April 12, 2007
    Inventor: Ryusuke Hasegawa
  • Patent number: 7138188
    Abstract: A magnetic ribbon or sheet is coated with an electrical insulator prior to formation of a magnetic implement. Manufacture of the magnetic implement is accomplished in a single process without a need for co-winding magnetic and insulator ribbons. Thermal property differences between the magnetic material and the insulator operate during heat treatment to enhance magnetic property modification of the implement.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: November 21, 2006
    Assignee: Metglas, Inc.
    Inventors: Ryusuke Hasegawa, Carl Eugene Kroger
  • Publication number: 20060219786
    Abstract: A coded marker in a magnetomechanical resonant electronic article identification system, includes a plurality of ductile magnetostrictive elements or strips based on an amorphous magnetic alloy ribbon with improved magnetomechanical resonance performance. The coded marker takes full advantage of the improved magnetomechanical properties, and an electronic article identification system utilizes the coded marker. The improved encodable and decodable marker/identification system is capable of identifying considerably larger number of articles than conventional systems.
    Type: Application
    Filed: April 1, 2005
    Publication date: October 5, 2006
    Applicant: METGLAS, INC.
    Inventor: Ryusuke Hasegawa
  • Publication number: 20060220849
    Abstract: A magnetomechanical resonance element or marker strip with facilitated performance based on an amorphous magnetostrictive alloy ribbon is utilized in an electronic article surveillance marker. A curvature along the element's length direction is introduced during ribbon fabrication with a different radius of curvature, which increases the resonance performance with minimal loss in the magneto-mechanical circuit, and more particularly, in a marker utilizing a plurality of resonating elements or marker strips. A marker is fabricated utilizing the resonance element or elements and is utilized in an electronic article surveillance system.
    Type: Application
    Filed: April 1, 2005
    Publication date: October 5, 2006
    Applicant: METGLAS, INC.
    Inventors: Ryusuke Hasegawa, John Webb, Auburn Chestnut, Larry Hill, Ronald Martis
  • Publication number: 20060180248
    Abstract: An iron-based amorphous alloy and magnetic core with an iron-based amorphous alloy having a chemical composition with a formula FeaBbSicCd, where 80<a?84, 8?b?18, 0<c?5 and 0<d?3, numbers being in atomic percent, with incidental impurities, simultaneously having a value of a saturation magnetic induction exceeding 1.6 tesla, a Curie temperature of at least 300° C. and a crystallization temperature of at least 350 ° C. When cast in a ribbon form, such an amorphous metal alloy is ductile and thermally stable, and is suitable for various electric devices because of high magnetic stability at such devices' operating temperatures.
    Type: Application
    Filed: February 17, 2005
    Publication date: August 17, 2006
    Applicants: Metglas, Inc., Hitachi Metals, Ltd.
    Inventors: Ryusuke Hasegawa, Daichi Azuma, Yoshihito Yoshizawa, Yuichi Ogawa
  • Patent number: 7056595
    Abstract: A magnetic ribbon or sheet is coated with an electrical insulator prior to formation of a magnetic implement. Manufacture of the magnetic implement is accomplished in a single process without need for co-winding magnetic and insulator ribbons. Thermal property differences between the magnetic material and the insulator operate during heat treatment to enhance magnetic property modification of the implement.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: June 6, 2006
    Assignee: Metglas, Inc.
    Inventors: Ryusuke Hasegawa, John P. Webb
  • Patent number: 7048809
    Abstract: Magnetic powder having a large coercivity, Hc, is consolidated with a non-magnetic binder to form a magnetic implement having desired dimension and shape. The magnetic implement exhibits a linear B-H loop and low magnetic loss. It is capable of operating under a wide magnetic field range, and finds use current and pulse transformers, inductors carrying large electrical current, stable bandpass filters, and the like.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: May 23, 2006
    Assignee: Metglas, Inc.
    Inventors: Ryusuke Hasegawa, Vincent H. Hammond, James M. O'Reilly
  • Publication number: 20060066433
    Abstract: A bulk amorphous metal inductive device includes a magnetic core having at least one low-loss bulk ferromagnetic amorphous metal magnetic component forming a magnetic circuit having an air therein. The component has a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The device has one or more electrical windings and is easily customized for specialized magnetic applications, e.g. for use as a transformer or inductor in power conditioning electronic circuitry employing switch-mode circuit topologies and switching frequencies ranging from 1 kHz to 200 kHz or more. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful at frequencies of 1 kHz or more.
    Type: Application
    Filed: February 14, 2005
    Publication date: March 30, 2006
    Applicant: METGLAS, INC.
    Inventors: Nicholas Decristofaro, Gordon Fish, Ryusuke Hasegawa, Carl Kroger, Scott Lindquist, Seshu Tatikola
  • Patent number: 6992555
    Abstract: A magnetic implement has a gap size ranging from about 1 to about 20 mm. The implement comprises a magnetic core composed of an amorphous Fe-based alloy. A physical gap is disposed in the core's magnetic path. The alloy has an amorphous structure; is based on the components: (Fe—Ni—Co)—(B—Si—C). The sum of its Fe+Ni+Co content is in the range of 65–85 atom percent. Advantageously, the core exhibits an overall magnetic permeability ranging from about 40 to about 200 and enhanced magnetic performance.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: January 31, 2006
    Assignee: Metglas, Inc.
    Inventors: Ryusuke Hasegawa, Ronald J. Martis
  • Publication number: 20050221126
    Abstract: A magnetic ribbon or sheet is coated with an electrical insulator prior to formation of a magnetic implement. Manufacture of the magnetic implement is accomplished in a single process without a need for co-winding magnetic and insulator ribbons. Thermal property differences between the magnetic material and the insulator operate during heat treatment to enhance magnetic property modification of the implement.
    Type: Application
    Filed: June 2, 2005
    Publication date: October 6, 2005
    Applicant: Metglas, Inc.
    Inventors: Ryusuke Hasegawa, Carl Kroger
  • Patent number: 6930581
    Abstract: A magnetic core has a toroidal configuration, formed by winding an iron-based amorphous metal ribbon. Thereafter the core is heat-treated to achieve a linear B-H characteristic. Advantageously, the linear B-H characteristic does not change with the level of magnetic fields applied and the frequency utilized. With such properties, the core is especially suited for use in a current transformer.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: August 16, 2005
    Assignee: Metglas, Inc.
    Inventors: Ronald J. Martis, Ryusuke Hasegawa, Seshu V. Tatikola
  • Patent number: 6873239
    Abstract: A bulk amorphous metal inductive device comprises a magnetic core having at least one low-loss bulk ferromagnetic amorphous metal magnetic component forming a magnetic circuit having an air gap therein. The component comprises a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhederally shaped part. The device has one or more electrical windings and is easily customized for specialized magnetic applications, e.g. for use as a transformer or inductor in power conditioning electronic circuitry employing switch-mode circuit topologies and switching frequencies ranging from 1 kHz to 200 kHz or more. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful at frequencies of 1 kHz or more.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: March 29, 2005
    Assignee: Metglas Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Carl E. Kroger, Scott M. Lindquist, Seshu V. Tatikola
  • Publication number: 20040151920
    Abstract: A magnetic ribbon or sheet is coated with an electrical insulator prior to formation of a magnetic implement. Manufacture of the magnetic implement is accomplished in a single process without need for co-winding magnetic and insulator ribbons. Thermal property differences between the magnetic material and the insulator operate during heat treatment to enhance magnetic property modification of the implement.
    Type: Application
    Filed: January 30, 2003
    Publication date: August 5, 2004
    Inventors: Ryusuke Hasegawa, John P. Webb
  • Publication number: 20040150503
    Abstract: A magnetic implement has a gap size ranging from about 1 to about 20 mm. The implement comprises a magnetic core composed of an amorphous Fe-based alloy. A physical gap is disposed in the core's magnetic path. The alloy has an amorphous structure; is based on the components: (Fe—Ni—Co)—(B—Si—C). The sum of its Fe+Ni+Co content is in the range of 65-85 atom percent. Advantageously, the core exhibits an overall magnetic permeability ranging from about 40 to about 200 and enhanced magnetic performance.
    Type: Application
    Filed: January 30, 2003
    Publication date: August 5, 2004
    Inventors: Ryusuke Hasegawa, Ronald J. Martis