Patents by Inventor Ryusuke Sagawa

Ryusuke Sagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190387164
    Abstract: The shape of a moving object is reconstructed from a shot image under relatively-strong ambient light or an embedded image is demodulated from a video image in which an image that may not be visually recognized is embedded to display the image. The image processing method of the present invention includes irradiating flashing light to the surface of the object based on a spreading signal obtained by spread spectrum modulation, receiving reflected light from the surface of the object to output the signal including the image information, a filtering for eliminating noise including a low-frequency component from the signal including the image information, inverse-spreading the signal after the filtering to demodulate the signal, and outputting, based on a signal obtained by the demodulation, an image reflecting the state of the surface of the object.
    Type: Application
    Filed: January 15, 2018
    Publication date: December 19, 2019
    Inventor: Ryusuke Sagawa
  • Patent number: 10361061
    Abstract: There is provided an electron microscope capable of recording images in a shorter time. The electron microscope (100) includes: an illumination system (4) for illuminating a sample (S) with an electron beam; an imaging system (6) for focusing electrons transmitted through the sample (S); an electron deflector (24) for deflecting the electrons transmitted through the sample (S); an imager (28) having a photosensitive surface (29) for detecting the electrons transmitted through the sample (S), the imager (28) being operative to record focused images formed by the electrons transmitted through the sample (S); and a controller (30) for controlling the electron deflector (24) such that an active electron incident region (2) of the photosensitive surface (29) currently hit by the beam is varied in response to variations in illumination conditions of the illumination system (4).
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: July 23, 2019
    Assignee: JEOL Ltd.
    Inventors: Yukihito Kondo, Ryusuke Sagawa
  • Patent number: 10340118
    Abstract: There is provided a scanning transmission electron microscope capable of producing plural types of STEM (scanning transmission electron microscopy) images using a single detector. The electron microscope (100) has an electron source (10) emitting an electron beam, a scanning deflector (13) for scanning the beam over a sample (S), an objective lens (14) for focusing the beam, an imager (22) placed at a back focal plane of the objective lens (14) or at a plane conjugate with the back focal plane, and a scanned image generator (40) for generating scanned images on the basis of images captured by the imager.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: July 2, 2019
    Assignee: JEOL Ltd.
    Inventor: Ryusuke Sagawa
  • Publication number: 20180337019
    Abstract: There is provided a scanning transmission electron microscope capable of producing plural types of STEM (scanning transmission electron microscopy) images using a single detector. The electron microscope (100) has an electron source (10) emitting an electron beam, a scanning deflector (13) for scanning the beam over a sample (S), an objective lens (14) for focusing the beam, an imager (22) placed at a back focal plane of the objective lens (14) or at a plane conjugate with the back focal plane, and a scanned image generator (40) for generating scanned images on the basis of images captured by the imager.
    Type: Application
    Filed: November 28, 2017
    Publication date: November 22, 2018
    Inventor: Ryusuke Sagawa
  • Publication number: 20180130634
    Abstract: There is provided an electron microscope capable of recording images in a shorter time. The electron microscope (100) includes: an illumination system (4) for illuminating a sample (S) with an electron beam; an imaging system (6) for focusing electrons transmitted through the sample (S); an electron deflector (24) for deflecting the electrons transmitted through the sample (S); an imager (28) having a photosensitive surface (29) for detecting the electrons transmitted through the sample (S), the imager (28) being operative to record focused images formed by the electrons transmitted through the sample (S); and a controller (30) for controlling the electron deflector (24) such that an active electron incident region (2) of the photosensitive surface (29) currently hit by the beam is varied in response to variations in illumination conditions of the illumination system (4).
    Type: Application
    Filed: June 12, 2017
    Publication date: May 10, 2018
    Inventors: Yukihito Kondo, Ryusuke Sagawa
  • Patent number: 9633439
    Abstract: A high-density shape reconstruction is conducted in measuring animal bodies as well. An image processing system has a projection device, an imaging device, and an image processing apparatus connected to the projection device and the imaging device, wherein the projection device projects a projected pattern to an observation target, the imaging device captures the projected pattern, and the image processing apparatus performs shape reconstruction based on an input image including the projected pattern. The image processing apparatus includes a unit for fetching the input image captured by the imaging device and performing line detection for the projected pattern projected by the projection device, wherein the projected pattern is a grid pattern formed of wave lines; and a unit for performing shape reconstruction by associating intersection points of vertical and horizontal lines extracted by the line detection with the projected pattern.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 25, 2017
    Assignees: National Institute of Advanced Industrial Science and Technology, Kagoshima University, Hiroshima City University
    Inventors: Ryusuke Sagawa, Hiroshi Kawasaki, Ryo Furukawa
  • Publication number: 20150221093
    Abstract: A high-density shape reconstruction is conducted in measuring animal bodies as well. An image processing system has a projection device, an imaging device, and an image processing apparatus connected to the projection device and the imaging device, wherein the projection device projects a projected pattern to an observation target, the imaging device captures the projected pattern, and the image processing apparatus performs shape reconstruction based on an input image including the projected pattern. The image processing apparatus includes a unit for fetching the input image captured by the imaging device and performing line detection for the projected pattern projected by the projection device, wherein the projected pattern is a grid pattern formed of wave lines; and a unit for performing shape reconstruction by associating intersection points of vertical and horizontal lines extracted by the line detection with the projected pattern.
    Type: Application
    Filed: June 28, 2013
    Publication date: August 6, 2015
    Inventors: Ryusuke Sagawa, Hiroshi Kawasaki, Ryo Furukawa
  • Patent number: 8837812
    Abstract: Provided are an image processing device, an image processing method, and a program which are capable of high density restoration and which are also strong to image processing. An image processing device mainly consists of a projector serving as a projection means, a camera as a photographing means, and an image processing means consisting of, for example, a personal computer. The image processing means acquires the intersection point between patterns from a photographed image and calculates a first solution including degree of freedom by using the constraint condition of a first tentative plane and a second tentative plane including the intersection point and the constraint condition obtained from the positional relationship between the projector and the camera. The degree of freedom is cancelled by primary search, thereby restoring a three-dimensional shape.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: September 16, 2014
    Assignee: Techno Dream 21 Co., Ltd.
    Inventors: Hiroshi Kawasaki, Ryo Furukawa, Ryusuke Sagawa, Yasushi Yagi
  • Patent number: 8005279
    Abstract: The present invention discloses a capsule endoscope image display controller (26) including: an image-to-image similarity calculating unit (36) that calculates, for each image included in an image sequence captured by a capsule endoscope which moves within the digestive organs, a similarity between the image and its temporally consecutive image; an amount-of-movement calculating unit (47) that calculates, for each image included in the image sequence, an amount of movement of a feature area included in the image; a video state classifying unit (41) that classifies, for each image included in the image sequence, a video state of the image into one of the following states, based on the video state, the similarity, and the amount of movement of the image: (a) “stationary state” indicating that the capsule endoscope is stationary, (b) “digestive organs deformation state” indicating that the digestive organs are deformed, and (c) “capsule moving state” indicating that the capsule endoscope is moving, based on the
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: August 23, 2011
    Assignee: Osaka University
    Inventors: Yasushi Yagi, Tomio Echigo, Ryusuke Sagawa, Hai Vu
  • Patent number: 7922652
    Abstract: An endoscope that is free from a dead area and capable of preventing the physician from overlooking any nidus is an endoscope for taking the inside of digestive organs, and the endoscope is provided with an omnidirectional camera (32), a light (34), a forceps (36) and a rinse water injection port (38) at the tip (24). The omnidirectional camera (32) is a device for taking the inside of digestive organs, and is able to take 360-degree images of its surroundings. A probe-type endoscope (20) is provided with a receiver (26) composed of orthogonal coils, and the receiver (26) is used for estimating the position and attitude of the probe-type endoscope (20). An image taken by the omnidirectional camera (32) is presented on a display unit (28) of an image processing device (22) connected to the probe-type endoscope (20).
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: April 12, 2011
    Assignee: Osaka University
    Inventors: Yasushi Yagi, Tomio Echigo, Ryusuke Sagawa
  • Publication number: 20110081072
    Abstract: [PROBLEM] Provided are an image processing device, an image processing method, and a program which are capable of high density restoration and which are also strong to image processing. [METHOD FOR SOLUTION] An image processing device (10) mainly consists of a projector (12) serving as a projection means, a camera (14) as a photographing means, and an image processing means (16) consisting of, for example, a personal computer. The image processing means (16) acquires the intersection point between patterns from a photographed image and calculates a first solution including degree of freedom by using the constraint condition of a first tentative plane and a second tentative plane including the intersection point and the constraint condition obtained from the positional relationship between the projector (12) and the camera (14). The degree of freedom is cancelled by primary search, thereby restoring a three-dimensional shape.
    Type: Application
    Filed: June 4, 2009
    Publication date: April 7, 2011
    Applicant: TECHNO DREAM 21 CO., LTD.
    Inventors: Hiroshi Kawasaki, Ryo Furukawa, Ryusuke Sagawa, Yasushi Yagi
  • Patent number: 7567246
    Abstract: This invention provides an apparatus and the like, which render an object from a predetermined view direction by a method using microfacet billboarding using 2D images obtained by photographing an object to be rendered from a plurality of photographing directions, and a depth image of the object to be rendered. This method obtains the geometrical shape of the object to be rendered on the basis of the depth image and the like, and approximates the geometrical shape using a set of microfacets whose directions change depending on the view direction. By mapping 2D images selected based on the view direction and photographing directions onto the respective microfacets as texture images, an arbitrary shaped object and landscape can be efficiently rendered.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: July 28, 2009
    Assignee: The University of Tokyo
    Inventors: Katsushi Ikeuchi, Hiroshi Kawasaki, Ryusuke Sagawa, Shuntaro Yamazaki
  • Publication number: 20080119691
    Abstract: The present invention discloses a capsule endoscope image display controller (26) including: an image-to-image similarity calculating unit (36) that calculates, for each image included in an image sequence captured by a capsule endoscope which moves within the digestive organs, a similarity between the image and its temporally consecutive image; an amount-of-movement calculating unit (47) that calculates, for each image included in the image sequence, an amount of movement of a feature area included in the image; a video state classifying unit (41) that classifies, for each image included in the image sequence, a video state of the image into one of the following states, based on the video state, the similarity, and the amount of movement of the image: (a) “stationary state” indicating that the capsule endoscope is stationary, (b) “digestive organs deformation state” indicating that the digestive organs are deformed, and (c) “capsule moving state” indicating that the capsule endoscope is moving, based on the
    Type: Application
    Filed: December 19, 2005
    Publication date: May 22, 2008
    Inventors: Yasushi Yagi, Tomio Echigo, Ryusuke Sagawa, Hai Vu
  • Publication number: 20070161853
    Abstract: An endoscope that is free from a dead area and capable of preventing the physician from overlooking any nidus is an endoscope for taking the inside of digestive organs, and the endoscope is provided with an omnidirectional camera (32), a light (34), a forceps (36) and a rinse water injection port (38) at the tip (24). The omnidirectional camera (32) is a device for taking the inside of digestive organs, and is able to take 360-degree images of its surroundings. A probe-type endoscope (20) is provided with a receiver (26) composed of orthogonal coils, and the receiver (26) is used for estimating the position and attitude of the probe-type endoscope (20). An image taken by the omnidirectional camera (32) is presented on a display unit (28) of an image processing device (22) connected to the probe-type endoscope (20).
    Type: Application
    Filed: February 17, 2005
    Publication date: July 12, 2007
    Inventors: Yasushi Yagi, Tomio Echigo, Ryusuke Sagawa
  • Publication number: 20040150638
    Abstract: This invention provides an apparatus and the like, which render an object from a predetermined view direction by a method using microfacet billboarding using 2D images obtained by photographing an object to be rendered from a plurality of photographing directions, and a depth image of the object to be rendered. This method obtains the geometrical shape of the object to be rendered on the basis of the depth image and the like, and approximates the geometrical shape using a set of microfacets whose directions change depending on the view direction. By mapping 2D images selected based on the view direction and photographing directions onto the respective microfacets as texture images, an arbitrary shaped object and landscape can be efficiently rendered.
    Type: Application
    Filed: June 25, 2003
    Publication date: August 5, 2004
    Inventors: Katsushi Ikeuchi, Hiroshi Kawasaki, Ryusuke Sagawa, Shuntaro Yamazaki