Patents by Inventor Ryutaro Mukai

Ryutaro Mukai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240026205
    Abstract: The present invention is directed to a drilling fluid containing water, biodegradable fibers, and a thickener. The thickener contains a water-absorbing silicate, and the biodegradable fibers have a fiber length of 5.0 to 50 mm.
    Type: Application
    Filed: December 3, 2021
    Publication date: January 25, 2024
    Applicants: AKITA UNIVERSITY, KANEKA CORPORATION
    Inventors: Shigemi NAGANAWA, Ryutaro MUKAI
  • Publication number: 20220228048
    Abstract: An object of the present invention is to provide an environmentally friendly drilling fluid that has excellent cuttings transport capability and excellent hole cleaning capability. A drilling fluid according to the present disclosure is a drilling fluid containing water, biodegradable fibers, and a thickener. The thickener contains a biodegradable polysaccharide. The content of the biodegradable polysaccharide in the drilling fluid is greater than or equal to 0.01 g/L and less than or equal to 5 g/L.
    Type: Application
    Filed: June 4, 2020
    Publication date: July 21, 2022
    Applicants: AKITA UNIVERSITY, KANEKA CORPORATION
    Inventors: Shigemi NAGANAWA, Ryutaro MUKAI
  • Patent number: 10851180
    Abstract: Provided is a polymer material containing at least one kind of a cellulose derivative having (a) an organosilyl group (the organosilyl group having a first aliphatic group, an unsaturated aliphatic group, or an aromatic group), and (b) an acyl group or a second aliphatic group.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: December 1, 2020
    Assignee: KANEKA CORPORATION
    Inventors: Ryutaro Mukai, Hiroto Koma, Takahiro Yasumoto, Katsuya Fujisawa, Tomohiro Abo
  • Patent number: 10663621
    Abstract: The retardation film according to the present invention is characterized by: including a polymer material that includes at least one cellulose derivative which includes specific monomer units: having an in-plane retardation Re(550) of 105-160 nm, reverse wavelength dispersion property, Re(450)/Re(550), of 0.80-0.89, and a thickness of 20-50 ?m; and containing inorganic particles. In particular, the present invention exhibits the effect of reducing the photoelastic coefficient.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: May 26, 2020
    Assignee: KANEKA CORPATION
    Inventors: Hiroto Koma, Ryutaro Mukai, Tomohiro Abo
  • Publication number: 20200025989
    Abstract: Provided are: a novel retardation film which has low photoelastic coefficient, while having good linear thermal expansion coefficient and water absorption; and the novel retardation film which additionally has high heat resistance. The above-described problem is solved by a retardation film which has an absolute value of the linear thermal expansion coefficient of 100 ppm/° C. or less, a glass transition temperature of 180° C. or more, a photoelastic coefficient of from 5×10?12 m2/N to 30×10?12 m2/N and a water absorption of 2.0 wt % or less, or a retardation film which has an absolute value of the linear thermal expansion coefficient of 100 ppm/° C. or less, a photoelastic coefficient of from 5×10?12 m2/N to 30×10?12 m2/N and a water absorption of 2.0 wt % or less.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 23, 2020
    Applicant: KANEKA CORPORATION
    Inventors: Ryutaro MUKAI, Hiroto Koma, Shinsuke Akao, Takahiro Yasumoto, Tomohiro Abo
  • Patent number: 10230112
    Abstract: A conductive film includes a layer 1 formed by a conductive material 1 that includes a polymer material 1 containing any of (1) an amine and an epoxy resin (where the epoxy resin and the amine are mixed in a ratio of 1.0 or more in terms of the ratio of the number of active hydrogen atoms in the amine with respect to the number of functional groups in the epoxy resin), (2) a phenoxy resin and an epoxy resin, (3) a saturated hydrocarbon polymer having a hydroxyl group, and (4) a curable resin and an elastomer and conductive particles 1. The conductive film has excellent stability in an equilibrium potential environment in a negative electrode and low electric resistance per unit area in the thickness direction. A multilayer conductive film including the conductive film achieves excellent interlayer adhesion, and using them as a current collector enables the production of a battery satisfying both weight reduction and durability.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 12, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Kato, Takashi Ito, Masami Yanagida, Satoshi Oku, Hiroyuki Ogino, Masato Kusakabe, Ryutaro Mukai, Masahiro Kojima, Takashi Kikuchi, Akiko Waki, Shiho Inoue, Shigeo Ibuka, Yasuyuki Tanaka, Yoshio Shimoida, Yuji Muroya, Norihisa Waki
  • Publication number: 20180282438
    Abstract: Provided is a polymer material containing at least one kind of a cellulose derivative having (a) an organosilyl group (the organosilyl group having a first aliphatic group, an unsaturated aliphatic group, or an aromatic group), and (b) an acyl group or a second aliphatic group.
    Type: Application
    Filed: October 6, 2016
    Publication date: October 4, 2018
    Applicant: KANEKA CORPORATION
    Inventors: Ryutaro MUKAI, Hiroto KOMA, Takahiro YASUMOTO, Katsuya FUJISAWA, Tomohiro ABO
  • Publication number: 20180081082
    Abstract: The retardation film according to the present invention is characterized by: including a polymer material that includes at least one cellulose derivative which includes specific monomer units; having an in-plane retardation Re(550) of 105-160 nm, reverse wavelength dispersion property, Re(450)/Re(550), of 0.80-0.89, and a thickness of 20-50 ?m; and containing inorganic particles. In particular, the present invention exhibits the effect of reducing the photoelastic coefficient.
    Type: Application
    Filed: April 15, 2016
    Publication date: March 22, 2018
    Applicant: KANEKA CORPORATION
    Inventors: Hiroto KOMA, Ryutaro MUKAI, Tomohiro ABO
  • Patent number: 9671544
    Abstract: The present invention achieves a phase difference film that is excellent in wavelength dispersion property, in-plane retardation, and film thickness, by using a polymeric material (i) which is composed of at least one type of cellulose derivative having a specific alkoxyl group substitution degree D1 and a specific 2-naphthoyl group substitution degree D2 and (ii) which has a specific total 2-naphthoyl group substitution degree D3.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: June 6, 2017
    Assignee: KANEKA CORPORATION
    Inventors: Ryutaro Mukai, Tomohiro Abo
  • Patent number: 9601780
    Abstract: A multilayer conductive film includes a layer 1 including a conductive material containing a polymer material 1 having an alicyclic structure and conductive particles 1 and a layer 2 including a material having durability against positive electrode potential. The multilayer conductive film has stability in an equilibrium potential environment in a negative electrode and stability in an equilibrium potential environment in a positive electrode, has low electric resistance per unit area in the thickness direction, and has excellent barrier properties for a solvent of an electrolytic solution. A battery including a current collector employing the multilayer conductive film can achieve both weight reduction and durability.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 21, 2017
    Assignees: KANEKA CORPORATION, NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Kato, Masahiro Kojima, Ryutaro Mukai, Masato Kusakabe, Hiroyuki Ogino, Takashi Kikuchi, Takashi Ito, Satoshi Oku, Akiko Waki, Shiho Inoue, Yuji Muroya, Norihisa Waki, Yasuyuki Tanaka, Shigeo Ibuka, Yoshio Shimoida
  • Publication number: 20160274286
    Abstract: The present invention achieves a phase difference film that is excellent in wavelength dispersion property, in-plane retardation, and film thickness, by using a polymeric material (i) which is composed of at least one type of cellulose derivative having a specific alkoxyl group substitution degree D1 and a specific 2-naphthoyl group substitution degree D2 and (ii) which has a specific total 2-naphthoyl group substitution degree D3.
    Type: Application
    Filed: October 20, 2014
    Publication date: September 22, 2016
    Applicant: KANEKA CORPORATION
    Inventors: Ryutaro MUKAI, Tomohiro ABO
  • Publication number: 20140186699
    Abstract: A multilayer conductive film includes a layer 1 including a conductive material containing a polymer material 1 having an alicyclic structure and conductive particles 1 and a layer 2 including a material having durability against positive electrode potential. The multilayer conductive film has stability in an equilibrium potential environment in a negative electrode and stability in an equilibrium potential environment in a positive electrode, has low electric resistance per unit area in the thickness direction, and has excellent barrier properties for a solvent of an electrolytic solution. A battery including a current collector employing the multilayer conductive film can achieve both weight reduction and durability.
    Type: Application
    Filed: May 22, 2012
    Publication date: July 3, 2014
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Yusuke Kato, Masahiro Kojima, Ryutaro Mukai, Masato Kusakabe, Hiroyuki Ogino, Takashi Kikuchi, Takashi Ito, Satoshi Oku, Akiko Waki, Shiho Inoue, Yuji Muroya, Norihisa Waki, Yasuyuki Tanaka, Shigeo Ibuka, Yoshio Shimoida
  • Publication number: 20140099537
    Abstract: A conductive film includes a layer 1 formed by a conductive material 1 that includes a polymer material 1 containing any of (1) an amine and an epoxy resin (where the epoxy resin and the amine are mixed in a ratio of 1.0 or more in terms of the ratio of the number of active hydrogen atoms in the amine with respect to the number of functional groups in the epoxy resin), (2) a phenoxy resin and an epoxy resin, (3) a saturated hydrocarbon polymer having a hydroxyl group, and (4) a curable resin and an elastomer and conductive particles 1. The conductive film has excellent stability in an equilibrium potential environment in a negative electrode and low electric resistance per unit area in the thickness direction. A multilayer conductive film including the conductive film achieves excellent interlayer adhesion, and using them as a current collector enables the production of a battery satisfying both weight reduction and durability.
    Type: Application
    Filed: May 22, 2012
    Publication date: April 10, 2014
    Applicants: Nissan Motor Co., Ltd., Kaneka Corporation
    Inventors: Yusuke Kato, Takashi Ito, Masami Yanagida, Satoshi Oku, Hiroyuki Ogino, Masato Kusakabe, Ryutaro Mukai, Masahiro Kojima, Takashi Kikuchi, Akiko Waki, Shiho Inoue, Shigeo Ibuka, Yasuyuki Tanaka, Yoshio Shimoida, Yuji Muroya, Norihisa Waki