Patents by Inventor S. Bahram Bahrami

S. Bahram Bahrami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220250056
    Abstract: Toward forming a single hybrid biosensing-imaging system that can operate inside an incubator, structures and methods are directed to placing modular and removable biosensors and biocompatible interfaces in 3D transparent test wells that contain biological samples. The technology enables continuous monitoring of multiple simultaneous parameters and functions of a living cell or cell clusters such as alterations of cellular ligands, physicochemical biomarkers, phenotypes, and/or extracellular compositions upon interactions with analytes or during progressions. Methods of capturing and analyzing direct orthogonal information from biological samples in 2D and 3D, which are conducive to generating new insights are presented.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 11, 2022
    Inventors: Mandana Veiseh, Pirooz Parvarandeh, S. Bahram Bahrami, Oliver Peter King-Smith, Todd S. Rutherford, Aaron Peter Schellenberg, Timothy Scott Edward Hiller
  • Patent number: 11338294
    Abstract: Toward forming a single hybrid biosensing-imaging system that can operate inside an incubator, structures and methods are directed to placing modular and removable biosensors and biocompatible interfaces in 3D transparent test wells that contain biological samples. The technology enables continuous monitoring of multiple simultaneous parameters and functions of a living cell or cell clusters such as alterations of cellular ligands, physicochemical biomarkers, phenotypes, and/or extracellular compositions upon interactions with analytes or during progressions. Methods of capturing and analyzing direct orthogonal information from biological samples in 2D and 3D, which are conducive to generating new insights are presented.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: May 24, 2022
    Assignee: Polybiomics, Inc.
    Inventors: Mandana Veiseh, Pirooz Parvarandeh, S. Bahram Bahrami, Oliver Peter King-Smith, Todd S. Rutherford, Aaron Peter Schellenberg, Timothy Scott Edward Hiller
  • Publication number: 20200101455
    Abstract: Toward forming a single hybrid biosensing-imaging system that can operate inside an incubator, structures and methods are directed to placing modular and removable biosensors and biocompatible interfaces in 3D transparent test wells that contain biological samples. The technology enables continuous monitoring of multiple simultaneous parameters and functions of a living cell or cell clusters such as alterations of cellular ligands, physicochemical biomarkers, phenotypes, and/or extracellular compositions upon interactions with analytes or during progressions. Methods of capturing and analyzing direct orthogonal information from biological samples in 2D and 3D, which are conducive to generating new insights are presented.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 2, 2020
    Applicant: POLYBIOMICS, INC.
    Inventors: Mandana Veiseh, Pirooz Parvarandeh, S. Bahram Bahrami, Oliver Peter King-Smith, Todd S. Rutherford, Aaron Peter Schellenberg, Timothy Scott Edward Hiller
  • Publication number: 20180272078
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality, of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Application
    Filed: October 11, 2017
    Publication date: September 27, 2018
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James M. Olson
  • Patent number: 9205202
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: December 8, 2015
    Assignee: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James M. Olson
  • Patent number: 9205201
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: December 8, 2015
    Assignee: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James M. Olson
  • Patent number: 8926567
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: January 6, 2015
    Assignee: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James Olson
  • Publication number: 20140309590
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Application
    Filed: February 11, 2014
    Publication date: October 16, 2014
    Applicant: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James M. Olson
  • Patent number: 8834428
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 16, 2014
    Assignee: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James Olson
  • Publication number: 20140241993
    Abstract: A chlorotoxin conjugate detectable by fluorescence imaging that allows for intra-operative visualization of cancerous tissues, compositions that include the chlorotoxin conjugate, and methods for using the chlorotoxin conjugate.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicants: University of Washington, Fred Hutchinson Cancer Research Center
    Inventors: Miqin Zhang, Richard G. Ellenbogen, Raymond W. Sze, Omid Veiseh, James Olson, Mandana Veishe, Patrik Gabikian, S-Bahram Bahrami
  • Patent number: 8778310
    Abstract: A chlorotoxin conjugate detectable by fluorescence imaging that allows for intra-operative visualization of cancerous tissues, compositions that include the chlorotoxin conjugate, and methods for using the chlorotoxin conjugate.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: July 15, 2014
    Assignees: University of Washington, Fred Hutchinson Cancer Research Center
    Inventors: Miqin Zhang, Richard G. Ellenbogen, Raymond W. Sze, Omid Veiseh, James M. Olson, Mandana Veiseh, Patrik Gabikian, S-Bahram Bahrami
  • Publication number: 20140162360
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 12, 2014
    Applicant: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James M. Olson
  • Publication number: 20140162901
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 12, 2014
    Applicant: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James M. Olson
  • Patent number: 8672887
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: March 18, 2014
    Assignee: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James Olson
  • Patent number: 8657786
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: February 25, 2014
    Assignee: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James Olson
  • Patent number: 8475412
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: July 2, 2013
    Assignee: PreSage Biosciences, Inc.
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James Olson
  • Patent number: 8349554
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: January 8, 2013
    Assignee: Fred Hutchinson Cancer Research Center
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James Olson
  • Publication number: 20120296206
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of liquid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Application
    Filed: June 5, 2012
    Publication date: November 22, 2012
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James Olson
  • Publication number: 20120265064
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of liquid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Application
    Filed: June 6, 2012
    Publication date: October 18, 2012
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James Olson
  • Publication number: 20120121514
    Abstract: A fluid delivery device includes an array of needles, each in fluid communication with a respective reservoir. Respective actuators are coupled so as to be operable to drive fluid from the reservoirs via needle ports. Each needle can have a plurality of ports, and the ports can be arranged to deliver a substantially equal amount of fluid at any given location along its length. A driver is coupled to the actuators to selectively control the rate, volume, and direction of flow of fluid through the needles. The device can simultaneously deliver a plurality of fluid agents along respective axes in solid tissue in vivo. If thereafter resected, the tissue can be sectioned for evaluation of an effect of each agent on the tissue, and based on the evaluation, candidate agents selected or deselected for clinical trials or therapy, and subjects selected or deselected for clinical trials or therapeutic treatment.
    Type: Application
    Filed: December 19, 2011
    Publication date: May 17, 2012
    Inventors: S. Bahram Bahrami, Mandana Veiseh, James Olson