Patents by Inventor S. Gee

S. Gee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150297210
    Abstract: Bowel retractor devices. In various forms, the bowel retractor devices are configurable from a collapsed position wherein the retractor may be inserted through a trocar cannula or other opening in a patient's body to a second expanded position wherein at least a portion of the patient's bowel may be advantageously supported in a desired position.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 22, 2015
    Inventors: Tamara Widenhouse, Andrew Yoo, Frederick E. Shelton, IV, Katherine J. Schmid, Aron O. Zingman, Richard W. Timm, Jacob S. Gee, Steven G. Hall, Daniel J. Mumaw, Taylor W. Aronhalt, Gregory W. Johnson, Michael J. Vendely, Andrew T. Beckman, James R. Janszen
  • Patent number: 9162674
    Abstract: A hybrid vehicle operates in an electric-drive-only mode and one or more modes using an internal combustion engine. A control pedal is movable to respective positions by a driver for indicating a desired vehicle motion. A controller selectably activates the engine according to instantaneous values of a variable wheel output demand and a variable pull-up threshold. The pedal position is converted to a respective instantaneous wheel output demand in response to an initial value from a mapping relationship that is modified in response to a difference between the initial value and the variable pull-up threshold. The pull-up threshold may preferably be dynamically determined according to a state of charge of a battery for powering the electric drive. The modification to the wheel output demand preferably reduces the slope of the mapping relationship near the pull-up threshold to reduce pedal position sensitivity in a region near the dynamically varying pull-up threshold.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: October 20, 2015
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Carol L. Okubo, Thomas S. Gee
  • Patent number: 9113884
    Abstract: Modular surgical instruments are disclosed. In various embodiments, a modular surgical instrument t is disclosed for use with a plurality of interchangeable surgical tool heads that are configured to perform different surgical actions. The instrument is configured to apply a plurality of different rotary drive motions and axial drive motions depending upon the type of surgical tool head attached thereto.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: August 25, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Frederick E. Shelton, IV, Jerome R. Morgan, Taylor W. Aronhalt, Gregory W. Johnson, Chester O. Baxter, III, Joseph E. Young, Barry C. Worrell, Christopher J. Schall, Mark S. Ortiz, Jason K. Rupert, Steven G. Hall, Daniel J. Mumaw, Aron O. Zingman, Katherine J. Schmid, Jacob S. Gee, Richard W. Timm
  • Publication number: 20150230784
    Abstract: A surgical instrument is disclosed. The surgical instrument includes an actuation system, a drive system, and a tool head. The drive system is coupled to the actuation system and includes a rotatable shaft which defines a longitudinal axis. The tool head is coupled to the drive system and includes an annular cartridge and a pliable bunchable ring. The annular cartridge includes a plurality of staples. The pliable bunchable ring surrounds the annular cartridge. The surgical instrument is configured to drive the staples through the pliable bunchable ring substantially transverse to the longitudinal axis.
    Type: Application
    Filed: May 4, 2015
    Publication date: August 20, 2015
    Inventors: Frederick E. Shelton, IV, Jerome R. Morgan, Taylor W. Aronhalt, Gregory W. Johnson, Chester O. Baxter, III, Joseph E. Young, Barry C. Worrell, Christopher J. Schall, Mark S. Ortiz, Jason K. Rupert, Steven G. Hall, Daniel J. Mumaw, Aron O. Zingman, Katherine J. Schmid, Jacob S. Gee, Richard W. Timm
  • Publication number: 20150230783
    Abstract: A surgical instrument is disclosed. The surgical instrument includes an actuation system, a drive system, and a tool head. The drive system is coupled to the actuation system and includes a rotatable shaft which defines a longitudinal axis. The tool head is coupled to the drive system and includes an annular cartridge and a pliable bunchable ring. The annular cartridge includes a plurality of staples. The pliable bunchable ring surrounds the annular cartridge. The surgical instrument is configured to drive the staples through the pliable bunchable ring substantially transverse to the longitudinal axis.
    Type: Application
    Filed: May 4, 2015
    Publication date: August 20, 2015
    Inventors: Frederick E. Shelton, IV, Jerome R. Morgan, Taylor W. Aronhalt, Gregory W. Johnson, Chester O. Baxter, III, Joseph E. Young, Barry C. Worrell, Christopher J. Schall, Mark S. Ortiz, Jason K. Rupert, Steven G. Hall, Daniel J. Mumaw, Aron O. Zingman, Katherine J. Schmid, Jacob S. Gee, Richard W. Timm
  • Patent number: 9089330
    Abstract: Bowel retractor devices. In various forms, the bowel retractor devices are configurable from a collapsed position wherein the retractor may be inserted through a trocar cannula or other opening in a patient's body to a second expanded position wherein at least a portion of the patient's bowel may be advantageously supported in a desired position.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: July 28, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Tamara Widenhouse, Andrew Yoo, Frederick E. Shelton, IV, Katherine J. Schmid, Aron O. Zingman, Richard W. Timm, Jacob S. Gee, Steven G. Hall, Daniel J. Mumaw, Taylor W. Aronhalt, Gregory W. Johnson, Michael J. Vendely, Andrew T. Beckman, James R. Janszen
  • Publication number: 20150201953
    Abstract: In various embodiments, a surgical instrument comprising a handle assembly, a shaft assembly, and an end effector are disclosed. In one embodiment, the handle assembly comprises a closure trigger and a yoke coupled to the closure trigger. Actuation of the closure trigger drives the yoke longitudinally in a first direction. A closure spring is coupled to the yoke. Longitudinal movement of the yoke in the first direction compresses the closure spring. A directional return stroke damper is coupled to the yoke. The directional return stroke damper is configured to provide a dampening force to longitudinal movement of the yoke in a second direction. A shaft assembly comprising a proximal end and a distal end is coupled to the handle. An end effector comprising a first jaw member and a second jaw member is coupled to the distal end of the shaft assembly.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 23, 2015
    Applicant: Ethicon Endo-Surgery, Inc.
    Inventors: Geoffrey S. Strobl, Chad P. Boudreaux, Jacob S. Gee
  • Publication number: 20150164535
    Abstract: Disclosed are ultrasonic and electrosurgical devices. The disclosed embodiments include a surgical instrument comprising an ultrasonic waveguide. The ultrasonic waveguide may comprise a proximal end and a distal end, wherein the proximal end is configured to couple to an ultrasonic transducer. The surgical instrument may further comprise a tube, and end effector, and a shaft assembly. The tube may define a lumen, wherein the waveguide is located within the lumen. The end effector may be coupled to the distal end of the waveguide and comprise an ultrasonic blade and a clamp arm comprising a movable jaw member. The shaft assembly may be configured to counteract deflection of the blade.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: Kevin D. Felder, Jacob S. Gee, Brian E. Keyt, Robert J. Laird, Amy L. Marcotte, Jeffrey D. Messerly, Emily H. Monroe, Daniel W. Price, Patrick J. Scoggins, Foster B. Stulen, John A. Weed, III, William B. Weisenburgh, II, John W. Willis
  • Publication number: 20150164538
    Abstract: Disclosed are ultrasonic and electrosurgical devices. The disclosed embodiments include a surgical instrument comprising a waveguide, and end effector and an electrical switch. The waveguide may comprise a proximal end and a distal end, wherein the proximal end is configured to couple to an ultrasonic transducer and one output of a radio frequency (RF) generator. The end effector may comprise an ultrasonic blade and a clamp arm coupled. The ultrasonic blade may be mechanically coupled to the distal end of the waveguide and electrically coupled to the waveguide. The clamp arm may comprise a movable jaw member electrically coupled to another output of the RF generator such that an electrical current can pass through the movable jaw member and the ultrasonic blade through tissue located between the movable jaw member and the ultrasonic blade.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: Jeffrey L. Aldridge, Craig N. Faller, Kevin D. Felder, Jacob S. Gee, William D. Kelly, Robert J. Laird, Amy L. Marcotte, Jeffrey D. Messerly, Emily H. Monroe, Scott A. Nield, Daniel W. Price, Patrick J. Scoggins, John B. Schulte, Geoffrey S. Strobl, James W. Voegele, John A. Weed, III, William B. Weisenburgh, II, Patrick A. Weizman, John W. Willis
  • Publication number: 20150164534
    Abstract: Disclosed are ultrasonic and electrosurgical devices. The disclosed embodiments include a surgical instrument comprising an ultrasonic waveguide. The ultrasonic waveguide may comprise a proximal end and a distal end, wherein the proximal end is configured to couple to an ultrasonic transducer. The surgical instrument may further comprise a rotation knob, a rotation shroud, and a rotation stop mechanism. The rotation knob may be configured to couple to an ultrasonic transducer to rotate the ultrasonic transducer. The rotation shroud may be configured to rotate the ultrasonic waveguide. The rotation stop mechanism may be coupled to the rotation shroud to limit rotation of the rotation knob beyond a predetermined rotary distance.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: Kevin D. Felder, Jacob S. Gee, Robert J. Laird, Amy L. Marcotte, Jeffrey D. Messerly, Emily H. Monroe, Daniel W. Price, Patrick J. Scoggins, John A. Weed, III, William B. Weisenburgh, II, John W. Willis
  • Publication number: 20150164533
    Abstract: Disclosed are ultrasonic and electrosurgical devices. The disclosed embodiments include a surgical instrument comprising an ultrasonic waveguide including a proximal end and a distal end. The proximal end may be configured to couple to an ultrasonic transducer. The surgical instrument may comprise a first tube, and end effector, and an impedance mechanism. The first tube may define a lumen, wherein the waveguide is located within the lumen. The end effector may be coupled to the distal end of the waveguide. The end effector may comprise an ultrasonic blade and a clamp arm. The clamp arm is movable from a clamped position to a non-clamped position. The impedance mechanism may be configured to operatively couple to the end effector to prevent materials from accumulating within the lumen during a surgical procedure.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: Kevin D. Felder, Jacob S. Gee, Robert J. Laird, Amy L. Marcotte, Jeffrey D. Messerly, Emily H. Monroe, Daniel W. Price, Patrick J. Scoggins, John A. Weed, III, William B. Weisenburgh, II, John W. Willis
  • Publication number: 20150164531
    Abstract: An apparatus comprises a shaft assembly, an ultrasonic blade, and a clamp assembly. The shaft assembly comprises an acoustic waveguide operable to transmit ultrasonic vibrations to the blade. The clamp assembly comprises a clamp arm pivotable toward and away from the blade about a pivot axis, to clamp tissue between the clamp arm and the blade. A rotation feature may provide rotation of the blade relative to the clamp arm about the longitudinal axis of the waveguide. Alternatively, the rotation feature may provide rotation of the clamp arm relative to the blade about the longitudinal axis. The rotation feature may be driven based on pivotal positioning of the clamp arm relative to the blade about the pivot axis. The rotation feature may selectively lock and unlock the angular position of either the blade or the clamp arm about the longitudinal axis at any of a number of predetermined angular positions.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Inventors: Craig N. Faller, Elizabeth DeBenedictis, William D. Kelly, Michael R. Lamping, Timothy G. Dietz, Patrick A. Weizman, Jacob S. Gee, John B. Schulte, Tylor C. Muhlenkamp, Douglas J. Turner, Eric B. Smith, Sean P. Conlon, Richard W. Timm, Jeffrey D. Messerly
  • Publication number: 20150164532
    Abstract: A surgical apparatus includes an end effector having an ultrasonic blade, a clamp arm, and a clamp pad. The end effector applies ultrasonic energy at the blade. The clamp arm pivots relative to the blade. The clamp pad is positioned on the clamp arm adjacent to the blade. The clamp arm includes a latching feature to retain the clamp pad relative to the clamp arm to prevent the clamp pad from moving laterally, longitudinally, and perpendicularly relative to the clamp arm.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Inventors: Craig N. Faller, Patrick A. Weizman, Jacqueline A. Anim, John W. Willis, Thomas C. Gallmeyer, Samardh Onukuri, John B. Schulte, Amy L. Marcotte, Sean P. Conlon, Jacob S. Gee, Kevin L. Houser, Jeffrey L. Aldridge, Ryan M. Asher, Foster B. Stulen
  • Publication number: 20150164536
    Abstract: Disclosed are ultrasonic and electrosurgical devices. The disclosed embodiments include a surgical instrument comprising a waveguide and an end effector. The waveguide may comprise a proximal end and a distal end, wherein the proximal end is coupled to an ultrasonic transducer. The end effector may be coupled to the distal end of the waveguide. The end effector may comprise an ultrasonic blade and a clamp arm operatively coupled thereto. The blade may comprise one or more coated sections that are coated with a thermally and electrically insulative material and one or more exposed sections that are not coated with the thermally and electrically insulative material.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: Jarema S. Czarnecki, Kevin D. Felder, Jacob S. Gee, Robert J. Laird, Amy L. Marcotte, Jeffrey D. Messerly, Emily H. Monroe, Daniel W. Price, Patrick J. Scoggins, Foster B. Stulen, John A. Weed, III, William B. Weisenburgh, II, John W. Willis
  • Publication number: 20150157356
    Abstract: Disclosed are ultrasonic and electrosurgical devices. The disclosed embodiments include a surgical instrument comprising an end effector and a cooling system. The end effector may comprise an ultrasonic blade and a clamp arm, wherein the clamp arm may comprises a movable jaw member. The cooling system may be in fluid communication with the ultrasonic blade.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 11, 2015
    Inventor: Jacob S. Gee
  • Publication number: 20150148834
    Abstract: An apparatus comprises a body, a shaft assembly, and an end effector. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm comprises a clamp pad. The clamp arm is movable toward the ultrasonic blade to compress tissue between the clamp pad and the ultrasonic blade in two stages. During the first stage, the clamp arm is configured to compress tissue with only a distal portion of the clamp pad. During the second stage, the clamp arm is configured to compress tissue with the distal portion and a proximal portion of the clamp pad. Thus, the tissue compression begins at the distal portion and subsequently progresses toward the proximal portion.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: Jacob S. Gee, David J. Cagle, Frederick L. Estera, William B. Weisenburgh, II, Frederick E. Shelton, IV, Craig N. Faller, Shan Wan, David A. Monroe, Jeffrey D. Messerly, William A. Olson, Richard W. Timm
  • Publication number: 20150148833
    Abstract: An apparatus comprises a body, a shaft assembly, an end effector, and a shield member. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm is movable toward the ultrasonic blade to compress tissue against the ultrasonic blade. The shield member is selectively movable from a first position to a second position in response to movement of the clamp arm toward the ultrasonic blade. The shield member is configured cover at least a first portion of the ultrasonic blade in the first position. The shield member is configured to uncover the first portion of the ultrasonic blade in the second position.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: Michael J. Stokes, Jacob S. Gee, Kevin D. Felder, Tylor C. Muhlenkamp, Patrick J. Scoggins, Craig N. Faller, Jeffrey D. Messerly, David J. Cagle, William B. Weisenburgh, II
  • Publication number: 20150148831
    Abstract: A surgical apparatus comprises a body, an ultrasonic transducer, a shaft, and an end effector. The ultrasonic transducer is operable to convert electrical power into ultrasonic vibrations. The body comprises a pivotal trigger. The shaft couples the end effector and the body together. The end effector comprises a clamp arm and an ultrasonic blade in acoustic communication with the ultrasonic transducer. The ultrasonic blade is operable to deliver ultrasonic vibrations to tissue. Pivotal movement of the trigger causes movement of the clamp arm. The trigger includes a compliant feature configured to limit the amount of force delivered to tissue by the clamp arm. The flexible feature may comprise a flexible band, living hinge, a series of living hinges, or a flexible tab.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: Craig N. Faller, Ryan M. Asher, John B. Schulte, Randal T. Byrum, Jose D. Vasquez, Thomas C. Gallmeyer, Benjamin M. Boyd, Amy L. Marcotte, Jacob S. Gee, Jonathan T. Batross, Jeffrey D. Messerly
  • Publication number: 20150148832
    Abstract: An apparatus comprises a body, a shaft assembly, an end effector, and a wetting member. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade that is configured to vibrate at an ultrasonic frequency. The wetting member is selectively movable between a first position and a second position. The wetting member is configured to be spaced away from the ultrasonic blade in the first position. The wetting member is configured to contact the ultrasonic blade in the second position and thereby apply a cooling fluid to the ultrasonic blade.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: Chad P. Boudreaux, Jacob S. Gee, David J. Cagle, Jeffrey D. Messerly, William B. Weisenburgh, II
  • Publication number: 20150119189
    Abstract: A hybrid vehicle operates in an electric-drive-only mode and one or more modes using an internal combustion engine. A control pedal is movable to respective positions by a driver for indicating a desired vehicle motion. A controller selectably activates the engine according to instantaneous values of a variable wheel output demand and a variable pull-up threshold. The pedal position is converted to a respective instantaneous wheel output demand in response to an initial value from a mapping relationship that is modified in response to a difference between the initial value and the variable pull-up threshold. The pull-up threshold may preferably be dynamically determined according to a state of charge of a battery for powering the electric drive. The modification to the wheel output demand preferably reduces the slope of the mapping relationship near the pull-up threshold to reduce pedal position sensitivity in a region near the dynamically varying pull-up threshold.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Carol L. Okubo, Thomas S. Gee