Patents by Inventor S. J. Chey

S. J. Chey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11131689
    Abstract: Embodiments herein describe structures of low-force wafer test probes and formation thereof. Structures of low-force wafer test probes and their formation via gray scale etch or electroplating is described. Structures are described that include a lower base structure on top of a substrate and an upper blade structure on top of the lower base structure. In various embodiments, a crown of a C4 bump is accommodated by one or both of: i) a cavity present in the lower base structure; and ii) a height of the upper blade structure. Processes for fabricating probe structures are described that include forming lower base structures upon a substrate and forming upper blade structures on top of the lower base structures. The upper blade structures include at least one blade. Each of the blade(s) include a cutting edge that points toward a center point within the probe structure.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: September 28, 2021
    Assignee: International Business Machines Corporation
    Inventors: David M. Audette, S J. Chey, Doreen D. DiMilia, Sankeerth Rajalingam, Grant Wagner
  • Patent number: 10697927
    Abstract: A gas sensing device includes a dielectric substrate, a heater integrated into a first side of the substrate and an insulating dielectric formed over the heater. A gas sensing layer is formed on a second side of the substrate opposite the first side. Contacts are formed on the gas sensing substrate. A noble material is formed on a portion of the gas sensing layer between the contacts to act as an ionizing catalyst such that, upon heating to a temperature, adsorption of a specific gas changes electronic properties of the gas sensing layer to permit detection of the gas.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: June 30, 2020
    Assignee: International Business Machines Corporation
    Inventors: S. J. Chey, Hendrik F. Hamann, Levente Klein, Siyuan Lu, Roland Nagy
  • Patent number: 10697928
    Abstract: A gas sensing device includes a dielectric substrate, a heater integrated into a first side of the substrate and an insulating dielectric formed over the heater. A gas sensing layer is formed on a second side of the substrate opposite the first side. Contacts are formed on the gas sensing substrate. A noble material is formed on a portion of the gas sensing layer between the contacts to act as an ionizing catalyst such that, upon heating to a temperature, adsorption of a specific gas changes electronic properties of the gas sensing layer to permit detection of the gas.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: June 30, 2020
    Assignee: International Business Machines Corporation
    Inventors: S. J. Chey, Hendrik F. Hamann, Levente Klein, Siyuan Lu, Roland Nagy
  • Patent number: 10670554
    Abstract: A gas sensing device includes a dielectric substrate, a heater integrated into a first side of the substrate and an insulating dielectric formed over the heater. A gas sensing layer is formed on a second side of the substrate opposite the first side. Contacts are formed on the gas sensing substrate. A noble material is formed on a portion of the gas sensing layer between the contacts to act as an ionizing catalyst such that, upon heating to a temperature, adsorption of a specific gas changes electronic properties of the gas sensing layer to permit detection of the gas.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: S. J. Chey, Hendrik F. Hamann, Levente Klein, Siyuan Lu, Roland Nagy
  • Publication number: 20190227100
    Abstract: Embodiments herein describe structures of low-force wafer test probes and formation thereof. Structures of low-force wafer test probes and their formation via gray scale etch or electroplating is described. Structures are described that include a lower base structure on top of a substrate and an upper blade structure on top of the lower base structure. In various embodiments, a crown of a C4 bump is accommodated by one or both of: i) a cavity present in the lower base structure; and ii) a height of the upper blade structure. Processes for fabricating probe structures are described that include forming lower base structures upon a substrate and forming upper blade structures on top of the lower base structures. The upper blade structures include at least one blade. Each of the blade(s) include a cutting edge that points toward a center point within the probe structure.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: David M. Audette, S J. Chey, Doreen D. DiMilia, Sankeerth Rajalingam, Grant Wagner
  • Publication number: 20180340958
    Abstract: Embodiments herein describe structures of low-force wafer test probes and formation thereof. Structures of low-force wafer test probes and their formation via gray scale etch or electroplating is described. Structures are described that include a lower base structure on top of a substrate and an upper blade structure on top of the lower base structure. In various embodiments, a crown of a C4 bump is accommodated by one or both of: i) a cavity present in the lower base structure; and ii) a height of the upper blade structure. Processes for fabricating probe structures are described that include forming lower base structures upon a substrate and forming upper blade structures on top of the lower base structures. The upper blade structures include at least one blade. Each of the blade(s) include a cutting edge that points toward a center point within the probe structure.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 29, 2018
    Inventors: David M. Audette, S J. Chey, Doreen D. DiMilia, Sankeerth Rajalingam, Grant Wagner
  • Publication number: 20180340959
    Abstract: Embodiments herein describe structures of low-force wafer test probes and formation thereof. Structures of low-force wafer test probes and their formation via gray scale etch or electroplating is described. Structures are described that include a lower base structure on top of a substrate and an upper blade structure on top of the lower base structure. In various embodiments, a crown of a C4 bump is accommodated by one or both of: i) a cavity present in the lower base structure; and ii) a height of the upper blade structure. Processes for fabricating probe structures are described that include forming lower base structures upon a substrate and forming upper blade structures on top of the lower base structures. The upper blade structures include at least one blade. Each of the blade(s) include a cutting edge that points toward a center point within the probe structure.
    Type: Application
    Filed: February 6, 2018
    Publication date: November 29, 2018
    Inventors: David M. Audette, S J. Chey, Doreen D. DiMilia, Sankeerth Rajalingam, Grant Wagner
  • Publication number: 20170023520
    Abstract: A gas sensing device includes a dielectric substrate, a heater integrated into a first side of the substrate and an insulating dielectric formed over the heater. A gas sensing layer is formed on a second side of the substrate opposite the first side. Contacts are formed on the gas sensing substrate. A noble material is formed on a portion of the gas sensing layer between the contacts to act as an ionizing catalyst such that, upon heating to a temperature, adsorption of a specific gas changes electronic properties of the gas sensing layer to permit detection of the gas.
    Type: Application
    Filed: October 6, 2016
    Publication date: January 26, 2017
    Inventors: S. J. Chey, Hendrik F. Hamann, Levente Klein, Siyuan Lu, Roland Nagy
  • Publication number: 20170024992
    Abstract: A gas sensing device includes a dielectric substrate, a heater integrated into a first side of the substrate and an insulating dielectric formed over the heater. A gas sensing layer is formed on a second side of the substrate opposite the first side. Contacts are formed on the gas sensing substrate. A noble material is formed on a portion of the gas sensing layer between the contacts to act as an ionizing catalyst such that, upon heating to a temperature, adsorption of a specific gas changes electronic properties of the gas sensing layer to permit detection of the gas.
    Type: Application
    Filed: October 6, 2016
    Publication date: January 26, 2017
    Inventors: S. J. Chey, Hendrik F. Hamann, Levente Klein, Siyuan Lu, Roland Nagy
  • Publication number: 20170016866
    Abstract: A gas sensing device includes a dielectric substrate, a heater integrated into a first side of the substrate and an insulating dielectric formed over the heater. A gas sensing layer is formed on a second side of the substrate opposite the first side. Contacts are formed on the gas sensing substrate. A noble material is formed on a portion of the gas sensing layer between the contacts to act as an ionizing catalyst such that, upon heating to a temperature, adsorption of a specific gas changes electronic properties of the gas sensing layer to permit detection of the gas.
    Type: Application
    Filed: July 13, 2015
    Publication date: January 19, 2017
    Inventors: S. J. Chey, Hendrik F. Hamann, Levente Klein, Siyuan Lu, Roland Nagy