Patents by Inventor S.M. N. Hasan

S.M. N. Hasan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10135269
    Abstract: A circuit for connecting a voltage source to a load is provided. The circuit may include a Vbatt node configured to be connected to a voltage source and a diode electrically connected with the Vbatt node. A battery isolation switch module is electrically connected with the diode, the diode being arranged in series between the battery isolation switch module and the Vbatt node. A capacitor bank is electrically connected with the battery isolation switch module and to ground. The capacitor bank is configured to be further connected with a microprocessor power supply. A high side driver may be configured to receive power from the voltage source. The diode is configured to isolate the capacitor bank and the power supply. The diode is arranged to prevent current from flowing back through the diode from the battery isolation switch module and the capacitor bank to the Vbatt node or HSD output.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: November 20, 2018
    Inventors: S M N Hasan, Timothy P Philippart, Sam Barakat
  • Publication number: 20130077194
    Abstract: Methods and apparatus are provided for detecting a phase current sensor fault in a multi-phase electrical motor. The method comprises, receiving an input torque command T* and measuring a set of feedback signals of the motor including a phase current Ix for each of the phases of the motor, generating direct and quadrature command phase currents Id*, Iq* for the motor corresponding to a value of the input torque command T*, determining a total command current Is=[(Iq*)2+(Id*)2]½, generating a negative sequence current Ineg, where for three phases Ineg=(?)[Ia+(?2)Ib+(?)Ic], where ?=ej2?/3, combining Ineg and Is to provide a normalized negative sequence current Inn=Ineg/Is, comparing the normalized negative sequence current Inn to a predetermined threshold value INN* to determine the presence of a phase current sensor fault, and executing a control action when Inn>INN*.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: S.M. N. HASAN, STEVEN E. SCHULZ, DAVID P. TASKY
  • Patent number: 8378603
    Abstract: Methods and systems for controlling an electric motor are provided. The electric motor includes at least one winding. A winding current flowing through the at least one winding is monitored. The winding current has an oscillating component and an offset component. The offset component of the winding current is isolated from the oscillating component of the winding current. The electric motor is controlled based on the offset component of the winding current.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: February 19, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: S. M. N. Hasan, Brian A. Welchko, David P. Tasky, Justin O. Nielsen, Silva Hiti
  • Patent number: 8362732
    Abstract: A method of detecting a phase winding fault in a multi-phase electric machine is executable via a motor controller, and includes measuring feedback signals of the machine, including each phase current, and generating reference phase voltages for each phase. The method includes calculating a predetermined voltage value using the feedback signals and reference phase voltages, and comparing the voltage value to a corresponding threshold to determine the fault. A control action is executed when the voltage value exceeds the corresponding threshold. The voltage value is one or more of: a ratio of a normalized negative sequence voltage to a modulation index, an RMS voltage for each phase, and total harmonic distortion of each phase current. An apparatus detects the fault, and includes a motor controller and an algorithm as set forth above. The apparatus may include a voltage inverter for generating a multi-phase alternating current output for powering the machine.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: January 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Mohammad N. Anwar, S. M. N. Hasan, Khwaja M. Rahman, Silva Hiti, Steven E. Schulz, Sean E. Gleason
  • Patent number: 8164298
    Abstract: Methods and systems are provided for detecting loss of isolation of a motor, connections, or phase cables while an AC motor is operating. The system includes a power supply that is substantially isolated from the ground or chassis having a power supply voltage, and a power inverter electrically coupled to the power supply. The power inverter is configured to provide AC current from the power supply in an AC phase at an AC terminal, with the phase having current at a fundamental frequency that controls the motor speed. An electric motor is electrically coupled to the AC terminal of the power inverter and has a chassis that is substantially electrically isolated from the AC terminal of the power inverter under normal operating conditions. A processor is configured to control the AC current provided by the power inverter. The processor is configured to receive a first voltage signal related to current flowing through a motor chassis.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Mohammad N. Anwar, Bryan M. Ludwig, S.M. N. Hasan, Sean E. Gleason, Bon Ho Bae
  • Publication number: 20110187304
    Abstract: A method of detecting a phase winding fault in a multi-phase electric machine is executable via a motor controller, and includes measuring feedback signals of the machine, including each phase current, and generating reference phase voltages for each phase. The method includes calculating a predetermined voltage value using the feedback signals and reference phase voltages, and comparing the voltage value to a corresponding threshold to determine the fault. A control action is executed when the voltage value exceeds the corresponding threshold. The voltage value is one or more of: a ratio of a normalized negative sequence voltage to a modulation index, an RMS voltage for each phase, and total harmonic distortion of each phase current. An apparatus detects the fault, and includes a motor controller and an algorithm as set forth above. The apparatus may include a voltage inverter for generating a multi-phase alternating current output for powering the machine.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 4, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Mohammad N. Anwar, S.M. N. Hasan, Khwaja M. Rahman, Silva Hiti, Steven E. Schulz, Sean E. Gleason
  • Publication number: 20110169438
    Abstract: Methods and systems for controlling an electric motor are provided. The electric motor includes at least one winding. A winding current flowing through the at least one winding is monitored. The winding current has an oscillating component and an offset component. The offset component of the winding current is isolated from the oscillating component of the winding current. The electric motor is controlled based on the offset component of the winding current.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 14, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: S.M. N. HASAN, BRIAN A. WELCHKO, DAVID P. TASKY, JUSTIN O. NIELSEN, SILVA HITI
  • Publication number: 20110089883
    Abstract: A method of detecting a phase winding fault in a multi-phase electric machine is executable via a motor controller, and includes measuring feedback signals of the machine, including each phase current, and generating reference phase voltages for each phase. The method includes calculating a predetermined voltage value using the feedback signals and reference phase voltages, and comparing the voltage value to a corresponding threshold to determine the fault. A control action is executed when the voltage value exceeds the corresponding threshold. The voltage value is one or more of: a ratio of a normalized zero sequence voltage to a modulation index, an RMS voltage for each phase, and total harmonic distortion of each phase current. An apparatus detects the fault, and includes a motor controller and an algorithm as set forth above. The apparatus may include a voltage inverter for generating a multi-phase alternating current output for powering the machine.
    Type: Application
    Filed: October 21, 2009
    Publication date: April 21, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Mohammad N. Anwar, S.M. N. Hasan, Khwaja M. Rahman, Silva Hiti, Steven E. Schulz, Sean E. Gleason
  • Publication number: 20100244760
    Abstract: Methods and systems are provided for detecting loss of isolation of a motor, connections, or phase cables while an AC motor is operating. The system includes a power supply that is substantially isolated from the ground or chassis having a power supply voltage, and a power inverter electrically coupled to the power supply. The power inverter is configured to provide AC current from the power supply in an AC phase at an AC terminal, with the phase having current at a fundamental frequency that controls the motor speed. An electric motor is electrically coupled to the AC terminal of the power inverter and has a chassis that is substantially electrically isolated from the AC terminal of the power inverter under normal operating conditions. A processor is configured to control the AC current provided by the power inverter. The processor is configured to receive a first voltage signal related to current flowing through a motor chassis.
    Type: Application
    Filed: March 26, 2009
    Publication date: September 30, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Mohammad N. Anwar, Bryan M. Ludwig, S.M. N. Hasan, Sean E. Gleason, Bon Ho Bae