Patents by Inventor S. Mark Davis

S. Mark Davis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9327260
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: May 3, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. Di Nicolantonio, John J. Waldrop
  • Patent number: 9233893
    Abstract: A selective hydrogenation process that is particularly effective in selectively hydrogenating alkynl compounds, such as acetylene or methyl acetylene, over alkenyl compounds, such as ethylene, is described. The process utilizes a slurry conversion unit for heat efficiency purposes during the conversion of acetylene into ethylene.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: January 12, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Paul F. Keusenkothen, Charles J. Mart
  • Patent number: 9181147
    Abstract: In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4+ olefinic and aromatic hydrocarbons is recovered from the first stream and is fed together with a methylating agent to a reaction zone containing a catalyst under reaction conditions including a temperature of about 450° C. to about 700° C., such that aromatics components in the second stream undergo dealkylation, transalkylation and/or methylation and aliphatic components undergo cracking and aromatization to produce a third stream having an increased xylene content compared with said second stream and a C3? olefin by-product. The C3? olefin by-product is recovered and para-xylene is removed from at least part of said third stream.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: November 10, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, S. Mark Davis, John D. Y. Ou, Xiaobo Zheng
  • Patent number: 9102884
    Abstract: The invention relates to a hydroprocessed product that can be produced by hydroprocessing tar, such as a tar obtained from hydrocarbon pyrolysis. The invention also relates to methods for producing such a hydroprocessed product, and the use of such a product, e.g., as a fuel oil blending component.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: August 11, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Paul M. Edwards, Stephen H. Brown, Frank C. Wang, S. Mark Davis
  • Patent number: 9090836
    Abstract: The invention relates to upgraded pyrolysis products, processes for upgrading products obtained from hydrocarbon pyrolysis, equipment useful for such processes, and the use of upgraded pyrolysis products.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: July 28, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, S. Mark Davis, Teng Xu, Keith G. Reed, Ananthakrishnan Bhasker
  • Patent number: 9067851
    Abstract: A selective hydrogenation method is particularly effective in selectively hydrogenating alkynyl compounds, such as acetylene or methyl acetylene, over alkenyl compounds, such as ethylene. The method produces a relatively high quantity of heat during the selective hydrogenation reaction. This production of heat is, however, quite beneficial in that enough heat is produced such that a substantial portion of the produced heat can be recovered for heat efficiency purposes.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: June 30, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Neeraj Sangar, Paul F. Keusenkothen
  • Patent number: 9056297
    Abstract: A process and apparatus for cracking a hydrocarbon feed containing resid, comprising: heating a hydrocarbon feedstock containing resid; passing said heated hydrocarbon feedstock to a vapor/liquid separator; flashing said heated hydrocarbon feedstock in said vapor/liquid separator to form a vapor phase and a liquid phase containing said resid; passing at least a portion of said resid-containing liquid phase from said vapor/liquid separator to a thermal conversion reactor operating at 649° C. or more, wherein the thermal conversion reactor contains coke particles; and converting at least a portion of said resid into olefins.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 16, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Larry L. Iaccino, Richard C. Stell, Steven E. Silverberg, Jiunn-Shyan Liou, Howard Freund
  • Publication number: 20140323783
    Abstract: A method and system for converting hydrocarbons into C2+ unsaturates is described. The method includes providing a structural member upstream of a reaction zone having a surface of a catalytic material, wherein the catalytic material is rendered catalytically active to promote the reaction of coke and/or coke precursors with hydrogen (H2) and/or an oxidant. Then, the method involves exposing a hydrocarbon stream to the catalytic material, wherein the hydrocarbon stream comprising coke and/or coke precursors react in the presence of the catalytic material to convert at least a portion of the coke and/or coke precursors to vapor products. Finally, the hydrocarbons in the hydrocarbon stream containing vapor products and hydrocarbons are converted in the reaction zone to produce a reactor product having C2+ unsaturates.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 30, 2014
    Inventors: Paul F. Keusenkothen, Larry Lee Iaccino, Ronald G. Searle, S. Mark Davis
  • Publication number: 20140061094
    Abstract: The invention relates to a hydroprocessed product that can be produced by hydroprocessing tar, such as a tar obtained from hydrocarbon pyrolysis. The invention also relates to methods for producing such a hydroprocessed product, and the use of such a product, e.g., as a fuel oil blending component.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Teng Xu, Paul M. Edwards, Stephen H. Brown, Frank C. Wang, S. Mark Davis
  • Publication number: 20140061096
    Abstract: The invention relates to processes for upgrading products obtained from hydrocarbon pyrolysis, equipment useful for such processes, and the use of upgraded pyrolysis products.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Stephen H. BROWN, S. Mark Davis, J. Scott Buchanan, David T. Ferrughelli, Keith G. Reed
  • Publication number: 20130296622
    Abstract: In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4+ olefinic and aromatic hydrocarbons is recovered from the first stream and is fed together with a methylating agent to a reaction zone containing a catalyst under reaction conditions including a temperature of about 450° C. to about 700° C., such that aromatics components in the second stream undergo dealkylation, transalkylation and/or methylation and aliphatic components undergo cracking and aromatization to produce a third stream having an increased xylene content compared with said second stream and a C3? olefin by-product. The C3? olefin by-product is recovered and para-xylene is removed from at least part of said third stream.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Inventors: LARRY L. IACCINO, S. MARK DAVIS, JOHN D.Y. OU, XIAOBO ZHENG
  • Publication number: 20130233764
    Abstract: The invention relates to upgraded pyrolysis products, processes for upgrading products obtained from hydrocarbon pyrolysis, equipment useful for such processes, and the use of upgraded pyrolysis products.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 12, 2013
    Inventors: Stephen H. Brown, S. Mark Davis, Teng Xu, Keith G. Reed, Ananthakrishnan Bhasker
  • Publication number: 20130204056
    Abstract: A selective hydrogenation method is particularly effective in selectively hydrogenating alkynyl compounds, such as acetylene or methyl acetylene, over alkenyl compounds, such as ethylene. The method produces a relatively high quantity of heat during the selective hydrogenation reaction. This production of heat is, however, quite beneficial in that enough heat is produced such that a substantial portion of the produced heat can be recovered for heat efficiency purposes.
    Type: Application
    Filed: August 9, 2012
    Publication date: August 8, 2013
    Inventors: S. Mark Davis, Neeraj Sangar, Paul F. Keusenkothen
  • Publication number: 20130204055
    Abstract: A selective hydrogenation process that is particularly effective in selectively hydrogenating alkynl compounds, such as acetylene or methyl acetylene, over alkenyl compounds, such as ethylene, is described. The process utilizes a slurry conversion unit for heat efficiency purposes during the conversion of acetylene into ethylene.
    Type: Application
    Filed: August 9, 2012
    Publication date: August 8, 2013
    Inventors: S. Mark Davis, Paul F. Keusenkothen, Charles J. Mart
  • Publication number: 20130156656
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. Dinicolantonio, John J. Waldrop
  • Publication number: 20130115143
    Abstract: A process and apparatus for cracking a hydrocarbon feed containing resid, comprising: heating a hydrocarbon feedstock containing resid; passing said heated hydrocarbon feedstock to a vapor/liquid separator; flashing said heated hydrocarbon feedstock in said vapor/liquid separator to form a vapor phase and a liquid phase containing said resid; passing at least a portion of said resid-containing liquid phase from said vapor/liquid separator to a thermal conversion reactor operating at 649° C. or more, wherein the thermal conversion reactor contains coke particles; and converting at least a portion of said resid into olefins.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 9, 2013
    Applicant: ExxonMobil Chemical Company - Law Technology
    Inventors: S. Mark DAVIS, Larry L. IACCINO, Richard C. STEEL, Steven E. SILVERBERG, Jiunn-Shyan LIOU, Howard FREUND
  • Patent number: 8399729
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. DiNicolantonio, John J. Waldrop
  • Patent number: 8361311
    Abstract: A process and apparatus for cracking a hydrocarbon feed containing resid, comprising: heating a hydrocarbon feedstock containing resid; passing said heated hydrocarbon feedstock to a vapor/liquid separator; flashing said heated hydrocarbon feedstock in said vapor/liquid separator to form a vapor phase and a liquid phase containing said resid; passing at least a portion of said resid-containing liquid phase from said vapor/liquid separator to a thermal conversion reactor operating at 649° C. or more, wherein the thermal conversion reactor contains coke particles; and converting at least a portion of said resid into olefins.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: January 29, 2013
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Larry Lee Iaccino, Richard C. Stell, Steven E. Silverberg, Jiunn-Shyan Liou, Howard Freund
  • Publication number: 20120006722
    Abstract: A process and apparatus for cracking a hydrocarbon feed containing resid, comprising: heating a hydrocarbon feedstock containing resid; passing said heated hydrocarbon feedstock to a vapor/liquid separator; flashing said heated hydrocarbon feedstock in said vapor/liquid separator to form a vapor phase and a liquid phase containing said resid; passing at least a portion of said resid-containing liquid phase from said vapor/liquid separator to a thermal conversion reactor operating at 649° C. or more, wherein the thermal conversion reactor contains coke particles; and converting at least a portion of said resid into olefins.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Inventors: S. Mark Davis, Larry Lee Iaccino, Richard C. Stell, Steven E. Silverberg, Jiunn-Shyan Liou, Howard Freund
  • Publication number: 20120006723
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. Dinicolantonio, John J. Waldrop