Patents by Inventor Søren Porsgaard

Søren Porsgaard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11774397
    Abstract: There is presented an electrochemical sensor (100) for sensing an analyte in an associated volume (106), the sensor comprising a first solid element and a second solid element being joined to the first solid element, a chamber (110) being placed at least partially between the first solid element and the second solid element, said chamber comprising a reaction region (130), and a reservoir region (132) being connected with the reaction region, wherein an one or more analyte permeable openings (122) connect the reaction region (130) with the associated volume (106), and wherein the electrochemical sensor (100) further comprises an analyte permeable membrane (124) in said one or more analyte permeable openings, a working electrode (104) a reference electrode (108), and a guard electrode (109) arranged so as to enable reduction or oxidation of at least some reactants from at least a part of the reservoir region.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: October 3, 2023
    Assignee: SulfiLogger A/S
    Inventors: Søren Porsgaard, Lars Hauer Larsen
  • Publication number: 20230137889
    Abstract: There is presented an electrochemical sensor (100) for sensing an analyte in an associated volume (106), the sensor comprising a first solid element (126), a second solid element (128) being joined to the first solid element, a chamber (110) being placed at least partially between the first solid element and the second solid element, a working electrode (104) in the chamber (110), a reference electrode (108), and wherein one or more analyte permeable openings (122) connect the chamber (110) with the associated volume (106), and wherein the electrochemical sensor (100) further comprises an analyte permeable membrane (124) in said one or more analyte permeable openings, wherein the one or more analyte permeable openings are placed at least partially between the first solid element and the second solid element.
    Type: Application
    Filed: December 23, 2022
    Publication date: May 4, 2023
    Inventors: Søren Porsgaard, Lars Hauer Larsen
  • Patent number: 11604159
    Abstract: A electrochemical sensor (100) for sensing an analyte in an associated volume (106), the sensor comprising a first solid element (126), a second solid element (128) being joined to the first solid element, a chamber (110) being placed at least partially between the first solid element and the second solid element, a working electrode (104) in the chamber (110) and wherein one or more analyte permeable openings (122) connect the chamber with the associated volume (106) and wherein the electrochemical sensor (100) further comprises an analyte permeable membrane (124) in said one or more analyte permeable openings, and wherein the one or more analyte permeable openings are arranged so that a distance from any point in at least one cross-sectional plane to the nearest point of a wall of said opening is 25 micrometer or less.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: March 14, 2023
    Assignee: SulfiLogger A/S
    Inventors: Søren Porsgaard, Lars Hauer Larsen
  • Patent number: 11592416
    Abstract: There is presented an electrochemical sensor (100) for sensing an analyte in an associated volume (106), the sensor comprising a first solid element (126), a second solid element (128) being joined to the first solid element, a chamber (110) being placed at least partially between the first solid element and the second solid element, a working electrode (104) in the chamber (110), a reference electrode (108), and wherein one or more analyte permeable openings (122) connect the chamber (110) with the associated volume (106), and wherein the electrochemical sensor (100) further comprises an analyte permeable membrane (124) in said one or more analyte permeable openings, wherein the one or more analyte permeable openings are placed at least partially between the first solid element and the second solid element.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: February 28, 2023
    Assignee: SulfiLogger A/S
    Inventors: Søren Porsgaard, Lars Hauer Larsen
  • Publication number: 20200182822
    Abstract: There is presented an electrochemical sensor (100) for sensing an analyte in an associated volume (106), the sensor comprising a first solid element and a second solid element being joined to the first solid element, a chamber (110) being placed at least partially between the first solid element and the second solid element, said chamber comprising a reaction region (130), and a reservoir region (132) being connected with the reaction region, wherein an one or more analyte permeable openings (122) connect the reaction region (130) with the associated volume (106), and wherein the electrochemical sensor (100) further comprises an analyte permeable membrane (124) in said one or more analyte permeable openings, a working electrode (104) a reference electrode (108), and a guard electrode (109) arranged so as to enable reduction or oxidation of at least some reactants from at least a part of the reservoir region.
    Type: Application
    Filed: July 14, 2017
    Publication date: June 11, 2020
    Applicant: Unisense A/S
    Inventors: Søren Porsgaard, Lars Hauer Larsen
  • Publication number: 20200182823
    Abstract: There is presented an electrochemical sensor (100) for sensing an analyte in an associated volume (106), the sensor comprising a first solid element (126), a second solid element (128) being joined to the first solid element, a chamber (110) being placed at least partially between the first solid element and the second solid element, a working electrode (104) in the chamber (110), a reference electrode (108), and wherein one or more analyte permeable openings (122) connect the chamber (110) with the associated volume (106), and wherein the electrochemical sensor (100) further comprises an analyte permeable membrane (124) in said one or more analyte permeable openings, wherein the one or more analyte permeable openings are placed at least partially between the first solid element and the second solid element.
    Type: Application
    Filed: July 14, 2017
    Publication date: June 11, 2020
    Applicant: Unisense A/S
    Inventors: Søren Porsgaard, Lars Hauer Larsen
  • Publication number: 20190219536
    Abstract: A electrochemical sensor (100) for sensing an analyte in an associated volume (106), the sensor comprising a first solid element (126), a second solid element (128) being joined to the first solid element, a chamber (110) being placed at least partially between the first solid element and the second solid element, a working electrode (104) in the chamber (110) and wherein one or more analyte permeable openings (122) connect the chamber with the associated volume (106) and wherein the electrochemical sensor (100) further comprises an analyte permeable membrane (124) in said one or more analyte permeable openings, and wherein the one or more analyte permeable openings are arranged so that a distance from any point in at least one cross-sectional plane to the nearest point of a wall of said opening is 25 micrometer or less.
    Type: Application
    Filed: July 14, 2017
    Publication date: July 18, 2019
    Applicant: Unisense A/S
    Inventors: Søren PORSGAARD, Lars Hauer LARSEN
  • Patent number: 10047331
    Abstract: A tray (100; 400; 500; 600) for accommodating a cell culture (101), such as an embryo, for use during culturing thereof and for optical monitoring of the cell culture, e.g. during in vitro fertilization comprises a carrier structure (104;404;504;604) defining at least one accommodating zone (102; 402; 502; 602) for accommodating the cell culture. At least one focal lens (110; 410; 510; 610), notably a numerical aperture increasing lens is integrally formed with the carrier structure to facilitate monitoring of the cell culture through the carrier structure. A diameter of the focal lens may exceed a diameter of the at least one accommodating zone. The focal lens may be integrally molded with the carrier structure from a thermoplastic material.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 14, 2018
    Assignee: UNISENSE FERTILITECH A/S
    Inventors: Jonas Lerche Hansen, Niels B. Ramsing, Søren Porsgaard, Holger Søe Plougsgaard, Mai Faurschou Isaksen
  • Publication number: 20160017267
    Abstract: A tray (100; 400; 500; 600) for accommodating a cell culture (101), such as an embryo, for use during culturing thereof and for optical monitoring of the cell culture, e.g. during in vitro fertilization comprises a carrier structure (104;404;504;604) defining at least one accommodating zone (102; 402; 502; 602) for accommodating the cell culture. At least one focal lens (110; 410; 510; 610), notably a numerical aperture increasing lens is integrally formed with the carrier structure to facilitate monitoring of the cell culture through the carrier structure. A diameter of the focal lens may exceed a diameter of the at least one accommodating zone. The focal lens may be integrally moulded with the carrier structure from a thermoplastic material.
    Type: Application
    Filed: March 13, 2014
    Publication date: January 21, 2016
    Inventors: Jonas Lerche HANSEN, Niels B. RAMSING, Søren PORSGAARD, Holger Søe PLOUGSGAARD, Mai Faurschou ISAKSEN
  • Publication number: 20150169842
    Abstract: Methods for determining a development potential for an embryo, for example an in vitro incubating human embryo, and apparatus for implementing such methods are described. In some examples a method comprises obtaining values for a plurality of morphokinetic characteristics relating to the development of an embryo during an observation period, for example characteristics relating to the temporal or morphological development of the embryo. A value for a continuous variable is determined by combining differences between the obtained values for these characteristics and corresponding reference values in a predefined manner. The reference values may, for example, be determined from values for the plurality of characteristics obtained for at least one reference embryo of known development potential. A development potential for the embryo is then established based on the determined value for the continuous variable.
    Type: Application
    Filed: June 25, 2013
    Publication date: June 18, 2015
    Inventors: Søren Porsgaard, Mette Lægdsmand, Inge Errebo Agerholm