Patents by Inventor Sa-Heum Kim

Sa-Heum Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190372162
    Abstract: Disclose are an electrolyte composite for a lithium secondary battery having an improved output; a cathode including a protective film on its surface; and a lithium secondary battery comprising the same.
    Type: Application
    Filed: September 25, 2018
    Publication date: December 5, 2019
    Inventors: Yoon Sung Lee, KiSeok Koh, Jung Young Cho, Ikkyu Kim, Yeolmae Yeo, Seung-Min Oh, Sa Heum Kim, Sungmin Choi
  • Publication number: 20190273253
    Abstract: The present invention provides a silicon nanowire structure embedded in nickel silicide nanowires for lithium-based battery anodes and anodes including the same. In particular, a Si nanowire structure embedded in NiSix nanowires according to the present invention may provide a solution to a problem, such as disconnection of Si nanowires from a current collector shown when the Si nanowires are expanded by alloying with Li or contracted during the use of a battery, and the like, by flexibly embedding the Si nanowires in the NiSix nanowires.
    Type: Application
    Filed: May 1, 2019
    Publication date: September 5, 2019
    Inventors: Kyo Min Shin, Sa Heum Kim, Hong Seok Min, Mihai Robert Zamfir, Je Mee Joe, Didier Pribat, Yeo Jin Lee
  • Patent number: 10347918
    Abstract: A surface-treated cathode active material useful for manufacturing a lithium secondary battery have excellent output characteristics by performing a double coating with metal oxide and an electron and ion conductive polymerized copolymer on a surface of a cathode active material for a lithium secondary battery to enhance electrochemical properties and thermal stability of the cathode active material.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: July 9, 2019
    Assignees: HYUNDAI MOTOR COMPANY, IUCF-HYU (INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIV.)
    Inventors: Kyo Min Shin, Sa Heum Kim, Dong Gun Kim, Yun Chae Jung, Dong Won Kim, Ik Su Kang, Yoon Sung Lee
  • Publication number: 20190198917
    Abstract: The present invention relates to a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries. The a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries includes a compound with an argyrodite-type crystal structure represented by the following Formula 1: LiaPSbNcXd??[Formula 1] wherein 6?a?7, 3<b<6, 0<c?1, 0<d?2, and each X is the same or different halogen atom selected from the group consisting of chlorine (Cl), bromine (Br), and iodine (I).
    Type: Application
    Filed: October 17, 2018
    Publication date: June 27, 2019
    Inventors: Ju Yeong Seong, Yong Jun Jang, Hong Seok Min, Sa Heum Kim, Yong Sub Yoon, Pil Gun Oh, Dong Wook Shin, Chan Hwi Park, Jin Oh Son
  • Publication number: 20190190007
    Abstract: Disclosed is a solid electrolyte for an all-solid battery and a method of preparing the same. Particularly, the solid electrolyte may have an argyrodite-type crystal structure.
    Type: Application
    Filed: November 5, 2018
    Publication date: June 20, 2019
    Inventors: Ju Yeong Seong, Yong Jun Jang, Pil Gun Oh, Yong Sub Yoon, Jae Min Lim, Sa Heum Kim, Hong Seok Min
  • Patent number: 10319995
    Abstract: The present invention provides a silicon nanowire structure embedded in nickel silicide nanowires for lithium-based battery anodes and anodes including the same. In particular, a Si nanowire structure embedded in NiSix nanowires according to the present invention may provide a solution to a problem, such as disconnection of Si nanowires from a current collector shown when the Si nanowires are expanded by alloying with Li or contracted during the use of a battery, and the like, by flexibly embedding the Si nanowires in the NiSix nanowires.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: June 11, 2019
    Assignees: Hyundai Motor Company, Research & Business Foundation Sungkyunkwan University
    Inventors: Kyo Min Shin, Sa Heum Kim, Hong Seok Min, Mihai Robert Zamfir, Je Mee Joe, Didier Pribat, Yeo Jin Lee
  • Publication number: 20190173073
    Abstract: A pouch type secondary battery may include an electrode assembly, electrode tabs connected to the electrode assembly, a pouch case to accommodate the electrode assembly and the electrode tabs in a sealed state, and lead tabs extending to the outside by passing through the pouch case in a state of being connected to the electrode tabs, wherein the lead tabs include a bending connection portion provided in the pouch case, and a breaking portion provided on a side of the bending connection portion to have a relatively small cross-sectional area and being broken when an overcurrent is applied or the pouch case expands.
    Type: Application
    Filed: June 6, 2018
    Publication date: June 6, 2019
    Applicants: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Seung Ho AHN, Sungmin CHOI, Sa Heum KIM
  • Publication number: 20190173127
    Abstract: Disclosed is a method of preparing a sulfide-based solid electrolyte for an all-solid battery having an argyrodite-type crystal structure through a solution process. The method including obtaining a precursor solution by dissolving lithium sulfide, phosphorus sulfide and a halogen compound in a solvent, obtaining a precursor powder by removing the solvent from the precursor solution. Solid electrolyte for an all-solid battery can be produced by such method.
    Type: Application
    Filed: October 15, 2018
    Publication date: June 6, 2019
    Inventors: Yong Jun Jang, Pil Gun Oh, Hong Seok Min, Yong Sub Yoon, Sa Heum Kim, Ju Yeong Seong
  • Patent number: 10177379
    Abstract: A positive electrode material for a secondary battery and a method for manufacturing the same are provided, in which manganese fluorophosphate containing lithium or sodium can be used as an electrode material. That is, a positive electrode material for a lithium/sodium battery is provided, in which intercalation/deintercalation of sodium/lithium ions is possible due to a short lithium diffusion distance caused by nanosizing of particles. Furthermore, a positive electrode material for a lithium/sodium battery is provided, which has electrochemical activity due to an increase in electrical conductivity by effective carbon coating.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: January 8, 2019
    Assignee: Hyundai Motor Company
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim
  • Publication number: 20170334724
    Abstract: Disclosed are compositions and methods for producing a cathode for a secondary battery, where lithium manganese fluorophosphate such as Li2MnPO4F can be used as an electrode material. Li2MnPO4F is prepared by chemical intercalation of lithium, and can be used as an electrode material, and a non-lithium containing material can then be used as an anode material for manufacturing of a full cell Furthermore, it is possible to provide a carbon coating for a cathode material for a lithium battery, which has improved electrical conductivity.
    Type: Application
    Filed: August 4, 2017
    Publication date: November 23, 2017
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Dong Jin Kim
  • Patent number: 9725321
    Abstract: Disclosed are compositions and methods for producing a cathode for a secondary battery, where lithium manganese fluorophosphate such as Li2MnPO4F can be used as an electrode material. Li2MnPO4F is prepared by chemical intercalation of lithium, and can be used as an electrode material, and a non-lithium containing material can then be used as an anode material for manufacturing of a full cell. Furthermore, it is possible to provide a carbon coating for a cathode material for a lithium battery, which has improved electrical conductivity.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: August 8, 2017
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Dong Jin Kim
  • Patent number: 9385371
    Abstract: A positive electrode material for a secondary battery and a method for manufacturing the same are provided, in which manganese fluorophosphate containing lithium or sodium can be used as an electrode material. That is, a positive electrode material for a lithium/sodium battery is provided, in which intercalation/deintercalation of sodium/lithium ions is possible due to a short lithium diffusion distance caused by nanosizing of particles. Furthermore, a positive electrode material for a lithium/sodium battery is provided, which has electrochemical activity due to an increase in electrical conductivity by effective carbon coating.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: July 5, 2016
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim
  • Publication number: 20160156036
    Abstract: A positive electrode material for a secondary battery and a method for manufacturing the same are provided, in which manganese fluorophosphate containing lithium or sodium can be used as an electrode material. That is, a positive electrode material for a lithium/sodium battery is provided, in which intercalation/deintercalation of sodium/lithium ions is possible due to a short lithium diffusion distance caused by nanosizing of particles. Furthermore, a positive electrode material for a lithium/sodium battery is provided, which has electrochemical activity due to an increase in electrical conductivity by effective carbon coating.
    Type: Application
    Filed: January 11, 2016
    Publication date: June 2, 2016
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim
  • Publication number: 20160141578
    Abstract: The present invention provides a composite separator for a battery cell and a method for manufacturing the same. In particular, the composite separator equipped in a battery cell includes a non-woven separator comprising a high heat resistant polymer fiber that comprises a thermal deformation material on a high heat resistant polymer material. Accordingly, thermal contraction of the separator can be prevented in the high temperature condition which occurs when the battery cell is overcharged, and change of the shape of the separator can be prevented.
    Type: Application
    Filed: June 28, 2015
    Publication date: May 19, 2016
    Inventors: Sang Joon Lee, Byung Jo Jeong, Sa Heum Kim
  • Patent number: 9225012
    Abstract: The present invention provides a manufacturing method of a secondary cell electrode forming a porous insulating layer on at least one surface between a negative electrode and a positive electrode, including coating an electrode layer slurry on the electrode surface, coating the porous insulating layer while in a state in which the electrode layer slurry has not been dried, and simultaneously drying the electrode layer slurry and the porous insulating layer coating slurry so a binder of the porous insulating layer does not block the pores of the electrode layer.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: December 29, 2015
    Assignee: Hyundai Motor Company
    Inventors: Jae Hoon Choi, Sa Heum Kim, Dong Gun Kim
  • Patent number: 9130213
    Abstract: Disclosed are compositions and methods for producing a cathode for a secondary battery, where a fluorophosphate of the formula LixNa2-xMnPO4F is used as an electrode material. LixNa2-xMnPO4F is prepared by partially substituting a sodium site with lithium through a chemical method. LixNa2-xMnPO4F prepared according to the invention provides a cathode material for a lithium battery that has improved electrochemical activity.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 8, 2015
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Dong Gun Kim, Sa Heum Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Sang Min Kim
  • Publication number: 20150200391
    Abstract: The present invention provides a silicon nanowire structure embedded in nickel silicide nanowires for lithium-based battery anodes and anodes including the same. In particular, a Si nanowire structure embedded in NiSix nanowires according to the present invention may provide a solution to a problem, such as disconnection of Si nanowires from a current collector shown when the Si nanowires are expanded by alloying with Li or contracted during the use of a battery, and the like, by flexibly embedding the Si nanowires in the NiSix nanowires.
    Type: Application
    Filed: November 17, 2014
    Publication date: July 16, 2015
    Inventors: Kyo Min Shin, Sa Heum Kim, Hong Seok Min, Mihai Robert Zamfir, Je Mee Joe, Didier Pribat, Yeo Jin Lee
  • Publication number: 20150188144
    Abstract: A surface-treated cathode active material useful for manufacturing a lithium secondary battery have excellent output characteristics by performing a double coating with metal oxide and an electron and ion conductive polymerized copolymer on a surface of a cathode active material for a lithium secondary battery to enhance electrochemical properties and thermal stability of the cathode active material.
    Type: Application
    Filed: November 7, 2014
    Publication date: July 2, 2015
    Inventors: Kyo Min SHIN, Sa Heum KIM, Dong Gun KIM, Yun Chae JUNG, Dong Won KIM, Ik Su KANG, Yoon Sung LEE
  • Patent number: 8906254
    Abstract: Disclosed are a cathode material for a secondary battery, and a manufacturing method of the same. The cathode material includes a lithium manganese phosphate LiMnPO4/sodium manganese fluorophosphate Na2MnPO4F composite, in which the LiMnPO4 and Na2MnPO4F have different crystal structures. Additionally, the method of manufacturing the cathode material may be done in a single step through a hydrothermal synthesis, which greatly reduces the time and cost of production. Additionally, the disclosure provides that the electric conductivity of the cathode material may be improved through carbon coating, thereby providing a cathode material with excellent electrochemical activity.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 9, 2014
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Sa Heum Kim, Dong Gun Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Dong Jin Kim
  • Patent number: 8715539
    Abstract: The present invention provides a positive electrode material for a lithium secondary battery comprising a compound represented by the following Formula 1: LiMn1-xMxP1-yAsyO4??[Formula 1] wherein 0<x?0.1, 0<y?0.1, and M is at least one metal selected from the group consisting of magnesium (Mg), titanium (Ti), nickel (Ni), cobalt (Co), and iron (Fe). Positive electrode materials of the present invention, when used as a positive electrode material in a lithium secondary battery, provides increased discharge potential of the battery due to its high discharge capacity, excellent cycle characteristics and charge/discharge efficiency, and high discharge potential with respect to lithium.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: May 6, 2014
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Sa Heum Kim, Seung Ho Ahn, Dong Gun Kim, Young Jun Kim, Jun Ho Song