Patents by Inventor Sabah K. Bux

Sabah K. Bux has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10017687
    Abstract: The present invention provides a method of preparing a proppant material by heating a reaction mixture comprising a plurality of oxides in a reactive atmosphere to a temperature above the melting point of the reaction mixture to form a melt, and then allowing the melt to solidify in a mold in the form of spherical particles. The present invention also provides a method of preparing a proppant material by heating a reaction mixture comprising a plurality of oxides and one or more additives in a reactive atmosphere to a temperature below the melting point of the reaction mixture to form a powder including one or more reaction products, and then processing the powder to form spherical particles. The present invention also provides a proppant material including spherical particles characterized by a specific gravity of about 1.0 to 3.0 and a crush strength of at least about 10,000 psi.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: July 10, 2018
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Vilupanur A. Ravi, Samad A. Firdosy, Jean-Pierre Fleurial, Sabah K. Bux, Andrew Kindler
  • Patent number: 9640746
    Abstract: The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: May 2, 2017
    Assignee: California Institute of Technology
    Inventors: James M. Ma, Sabah K. Bux, Jean-Pierre Fleurial, Vilupanur A. Ravi, Samad A. Firdosy, Kurt Star, Richard B. Kaner
  • Publication number: 20170066962
    Abstract: The disclosure herein includes methods of preparing ceramic beads, useful as proppant materials, by mixing ceramic precursors, such as slag, fly ash, or aluminum dross, forming bead precursors from the mixture, and heating the bead precursors to drive a chemical reaction between the ceramic precursors to form the ceramic beads. The resultant ceramic beads may be generally spherical particles that are characterized by diameters of about 0.1 to 2 mm, a diametral strength of at least about 100 MPa, and a specific gravity of about 1.0 to 3.0. A coating process may optionally be used to increase a diametral strength of a proppant material. A sieving process may optionally be used to obtain a smaller range of sizes of proppant materials.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 9, 2017
    Inventors: Vilupanur A. Ravi, Samad A. Firdosy, Sabah K. Bux, Jean-Pierre Fleurial, Shiao-Pin S. Yen, Andrew Kindler, Su C. Chi, Margie L. Homer, Bryan W. McEnerney, Pandurang Kulkarni, Desikan Sundararajan
  • Publication number: 20160111619
    Abstract: The present invention provides a composite thermoelectric material. The composite thermoelectric material can include a semiconductor material comprising a rare earth metal. The atomic percent of the rare earth metal in the semiconductor material can be at least about 20%. The composite thermoelectric material can further include a metal forming metallic inclusions distributed throughout the semiconductor material. The present invention also provides a method of forming this composite thermoelectric material.
    Type: Application
    Filed: January 22, 2014
    Publication date: April 21, 2016
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: James M. Ma, Sabah K. Bux, Jean-Pierre Fleurial, Vilupanur A. Ravi, Samad A. Firdosy, Kurt Star, Richard B. Kaner
  • Patent number: 9231180
    Abstract: The present invention provides a method of preparing a nanocomposite thermoelectric material. The method includes heating a reaction mixture of a semiconductor material and a metal complex to a temperature greater than the decomposition temperature of the metal complex. The heating forms metallic inclusions having a size less than about 100 nm that are substantially evenly distributed throughout the semiconductor material forming the nanocomposite thermoelectric material. The present invention also provides a nanocomposite thermoelectric material prepared by this method.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: January 5, 2016
    Assignee: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Sabah K. Bux
  • Publication number: 20150329769
    Abstract: The present invention provides a method of preparing a proppant material by heating a reaction mixture comprising a plurality of oxides in a reactive atmosphere to a temperature above the melting point of the reaction mixture to form a melt, and then allowing the melt to solidify in a mold in the form of spherical particles. The present invention also provides a method of preparing a proppant material by heating a reaction mixture comprising a plurality of oxides and one or more additives in a reactive atmosphere to a temperature below the melting point of the reaction mixture to form a powder including one or more reaction products, and then processing the powder to form spherical particles. The present invention also provides a proppant material including spherical particles characterized by a specific gravity of about 1.0 to 3.0 and a crush strength of at least about 10,000 psi.
    Type: Application
    Filed: May 14, 2015
    Publication date: November 19, 2015
    Inventors: Vilupanur A. Ravi, Samad A. Firdosy, Jean-Pierre Fleurial, Sabah K. Bux, Andrew Kindler
  • Patent number: 8808658
    Abstract: Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: August 19, 2014
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Richard B. Kaner, Sabah K. Bux, Jean-Pierre Fleurial, Marc Rodriguez
  • Publication number: 20140097391
    Abstract: The present invention provides a method of preparing a nanocomposite thermoelectric material. The method includes heating a reaction mixture of a semiconductor material and a metal complex to a temperature greater than the decomposition temperature of the metal complex. The heating forms metallic inclusions having a size less than about 100 nm that are substantially evenly distributed throughout the semiconductor material forming the nanocomposite thermoelectric material. The present invention also provides a nanocomposite thermoelectric material prepared by this method.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 10, 2014
    Applicant: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Sabah K. Bux
  • Patent number: 8591758
    Abstract: The present invention provides a method of making a substantially phase pure compound including a cation and an anion. The compound is made by mixing in a ball-milling device a first amount of the anion with a first amount of the cation that is less than the stoichiometric amount of the cation, so that substantially all of the first amount of the cation is consumed. The compound is further made by mixing in a ball-milling device a second amount of the cation that is less than the stoichiometric amount of the cation with the mixture remaining in the device. The mixing is continued until substantially all of the second amount of the cation and any unreacted portion of anion X are consumed to afford the substantially phase pure compound.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: November 26, 2013
    Assignee: California Institute of Technology
    Inventors: Jean-Pierre Fleurial, Sabah K. Bux, Richard B. Kaner
  • Publication number: 20120138843
    Abstract: The present invention provides a method of making a substantially phase pure compound including a cation and an anion. The compound is made by mixing in a ball-milling device a first amount of the anion with a first amount of the cation that is less than the stoichiometric amount of the cation, so that substantially all of the first amount of the cation is consumed. The compound is further made by mixing in a ball-milling device a second amount of the cation that is less than the stoichiometric amount of the cation with the mixture remaining in the device. The mixing is continued until substantially all of the second amount of the cation and any unreacted portion of anion X are consumed to afford the substantially phase pure compound.
    Type: Application
    Filed: June 8, 2011
    Publication date: June 7, 2012
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Jean-Pierre Fleurial, Sabah K. Bux, Richard B. Kaner
  • Publication number: 20110318250
    Abstract: Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 29, 2011
    Inventors: Richard B. Kaner, Sabah K. Bux, Jean-Pierre Fleurial, Marc Rodriguez