Patents by Inventor Sabbir Sajjad Rangwala
Sabbir Sajjad Rangwala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11604266Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.Type: GrantFiled: December 3, 2019Date of Patent: March 14, 2023Assignee: ARGO AI, LLCInventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
-
Publication number: 20200103501Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.Type: ApplicationFiled: December 3, 2019Publication date: April 2, 2020Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
-
Patent number: 10520591Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.Type: GrantFiled: March 7, 2017Date of Patent: December 31, 2019Assignee: ARGO AI, LLCInventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
-
Patent number: 9851556Abstract: A GmAPD imager with an increased field of view includes at least one array of movable mirrors. Each movable mirror in the array switches between at least two positions (states). The movable mirrors receive light coming from a first direction when the mirror is in the first state and a second direction when the mirror is in the second state, thus increasing the field of view of the imager.Type: GrantFiled: July 25, 2016Date of Patent: December 26, 2017Assignee: Argo Al, LLCInventors: Evgenii Yuryevich Kotelnikov, Igor Kudryashov, Samuel Richard Wilton, Sabbir Sajjad Rangwala
-
Publication number: 20170176576Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.Type: ApplicationFiled: March 7, 2017Publication date: June 22, 2017Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
-
Patent number: 9625580Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.Type: GrantFiled: January 3, 2014Date of Patent: April 18, 2017Assignee: Princeton Lightwave, Inc.Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
-
Publication number: 20170026556Abstract: A GmAPD imager with an increased field of view includes at least one array of movable mirrors. Each movable mirror in the array switches between at least two positions (states). The movable mirrors receive light coming from a first direction when the mirror is in the first state and a second direction when the mirror is in the second state, thus increasing the field of view of the imager.Type: ApplicationFiled: July 25, 2016Publication date: January 26, 2017Inventors: Evgenii Yuryevich Kotelnikov, Igor Kudryashov, Samuel Richard Wilton, Sabbir Sajjad Rangwala
-
Publication number: 20150192676Abstract: A method for developing a map of objects in a region surrounding a location is disclosed. The method includes interrogating the region along a detection axis with a series of optical pulses and detecting reflections of the optical pulses that originate at objects located along the detection axis. A multi-dimensional map of the region is developed by scanning the detection axis about the location in at least one dimension. The reflections are detected via a single-photon detector that is armed using a sub-gating scheme such that the single-photon detector selectively detects photons of reflections that originate only within each of a plurality of zones that collectively define the detection field. In some embodiments, the optical pulses have a wavelength within the range of 1350 nm to 1390 nm, which is a spectral range having a relatively high eye-safety threshold and a relatively low solar background.Type: ApplicationFiled: January 3, 2014Publication date: July 9, 2015Applicant: Princeton Lightwave, Inc.Inventors: Evgenii Yuryevich Kotelnikov, William Paul Mordarski, Igor Kudryashov, Mark D. Entwistle, Sabbir Sajjad Rangwala
-
Patent number: 7902570Abstract: A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse.Type: GrantFiled: October 9, 2009Date of Patent: March 8, 2011Assignee: Princeton Lightwave, Inc.Inventors: Mark Allen Itzler, Rafael Ben-Michael, Sabbir Sajjad Rangwala
-
Publication number: 20100025798Abstract: A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse.Type: ApplicationFiled: October 9, 2009Publication date: February 4, 2010Applicant: PRINCETON LIGHTWAVE, INC.Inventors: Mark Allen Itzler, Rafael Ben-Michael, Sabbir Sajjad Rangwala
-
Patent number: 7626193Abstract: A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse.Type: GrantFiled: March 27, 2006Date of Patent: December 1, 2009Assignee: Princeton Lightwave, Inc.Inventors: Mark Allen Itzler, Rafael Ben-Michael, Sabbir Sajjad Rangwala