Patents by Inventor Sabine BERTRAM

Sabine BERTRAM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11805105
    Abstract: Systems and methods for ensuring data privacy in a data sharing system are provided. A computer implemented method carried out at a host computing system includes: accessing a set of data from a data source including a true element and at least one spurious element so that the host computing system cannot differentiate between the elements to obfuscate the true element from the host computing system. The method includes: accessing a code which is executable on the set of data so as to output multiple results for the elements of the set of data; processing the set of data, including for each element: executing the code on the element to generate a result; computing a hash value of the element; and outputting the result in association with the hash value to a third-party computing system. A third-party computing system has access to the true hash value of the true element for identification of the result generated by execution of the code on the true element.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: October 31, 2023
    Assignee: University of Cape Town
    Inventors: Sabine Bertram, Pierre Georg Georg
  • Publication number: 20200287874
    Abstract: Systems and methods for ensuring data privacy in a data sharing system are provided. A computer implemented method carried out at a host computing system includes: accessing a set of data from a data source including a true element and at least one spurious element so that the host computing system cannot differentiate between the elements to obfuscate the true element from the host computing system. The method includes: accessing a code which is executable on the set of data so as to output multiple results for the elements of the set of data; processing the set of data, including for each element: executing the code on the element to generate a result; computing a hash value of the element; and outputting the result in association with the hash value to a third-party computing system. A third-party computing system has access to the true hash value of the true element for identification of the result generated by execution of the code on the true element.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 10, 2020
    Inventors: Sabine Bertram, Pierre Georg Georg
  • Patent number: 9878490
    Abstract: The invention relates to a method for laser welding two plastic components A, B brought into contact at least in the joining area, wherein component B facing away from the laser radiation consists of a plastic matrix with a white pigmentation of 1.5 5-20 wt.-%, and component A facing the laser radiation, through which the laser beam passes in the welding process, exhibits a plastic matrix. For a given laser wavelength the travel distance of the laser beam through the component A measures at most 10 mm, and given a white pigmentation of the component A in wt.-%, the product of the travel distance of the laser 10 beam through the component A in mm and white pigmentation in wt.-% is less than 1.25, and the travel distance of the laser beam through the component A measures at most 1 mm.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: January 30, 2018
    Assignee: EMS-PATENT AG
    Inventors: Jens Butzke, Stefan Würthner, Nikolai Lamberts, Pierre Dübon, Sabine Bertram, Heinz Caviezel
  • Patent number: 9815968
    Abstract: A thermoplastic moulding composition, in particular a polyamide moulding composition, consisting of, by weight: (A) 20-88%—thermoplastic material; (B) 10-60%—fibrous fillers, formed from (B1) 10-60%—glass fibers, selected from: glass fibres (B1_1) with a non-circular cross section, wherein the axis ratio of the main cross-sectional axis to the secondary cross-sectional axis is at least 2; high-strength glass fibres (B1_2) with a glass composition (substantially SiO2, AlO, and MgO; or mixtures thereof; (B2) 0-20%—glass fibres, different from glass fibres of component (B1) and have a circular cross section; and (B3) 0-20%—further fibrous tillers, different from fibres of (B1) and (B2), not based on glass, and selected from the group: carbon fibres, graphite fibres, aramid fibres, nanotubes; (C) 2-10%—LDS additive or a mixture of LDS additives; (D) 0-30%—particulate filler; (E) 0-2%—further, different additives; the sum of (A)-(E) is 100% by weight.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: November 14, 2017
    Assignee: EMS-PATENT AG
    Inventors: Georg Stoppelmann, Sabine Bertram, Mark Pfleghar
  • Publication number: 20160272788
    Abstract: A thermoplastic moulding composition, in particular a polyamide moulding composition, consisting of, by weight: (A) 20-88%—thermoplastic material; (B) 10-60%—fibrous fillers, formed from (B1) 10-60%—glass fibres, selected from: glass fibres (B1_1) with a non-circular cross section, wherein the axis ratio of the main cross-sectional axis to the secondary cross-sectional axis is at least 2; high-strength glass fibres (B1_2) with a glass composition (substantially SiO2, AlO, and MgO; or mixtures thereof; (B2) 0-20%—glass fibres, different from glass fibres of component (B1) and have a circular cross section; and (B3) 0-20%—further fibrous tillers, different from fibres of (B1) and (B2), not based on glass, and selected from the group: carbon fibres, graphite fibres, aramid fibres, nanotubes; (C) 2-10%—LDS additive or a mixture of LDS additives; (D) 0-30%—particulate filler; (E) 0-2%—further, different additives; the sum of (A)-(E) is 100% by weight.
    Type: Application
    Filed: May 31, 2016
    Publication date: September 22, 2016
    Applicant: EMS-PATENT AG
    Inventors: Georg STOPPELMANN, Sabine BERTRAM, Mark PFLEGHAR
  • Publication number: 20150005426
    Abstract: A thermoplastic moulding composition, in particular a polyamide moulding composition, consisting of, by weight: (A) 20-88%—thermoplastic material; (B) 10-60%—fibrous fillers, formed from (B1) 10-60%—glass fibres, selected from: glass fibres (B1_1) with a non-circular cross section, wherein the axis ratio of the main cross-sectional axis to the secondary cross-sectional axis is at least 2; high-strength glass fibres (B1_2) with a glass composition (substantially SiO2, AlO, and MgO; or mixtures thereof; (B2) 0-20%—glass fibres, different from glass fibres of component (B1) and have a circular cross section; and (B3) 0-20%—further fibrous fillers, different from fibres of (B1) and (B2), not based on glass, and selected from the group: carbon fibres, graphite fibres, aramid fibres, nanotubes; (C) 2-10%—LDS additive or a mixture of LDS additives; (D) 0-30%—particulate filler; (E) 0-2%—further, different additives; the sum of (A)-(E) is 100% by weight.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Applicant: EMS-PATENT AG
    Inventors: Georg STOPPELMANN, Sabine BERTRAM, Mark PFLEGHAR
  • Patent number: 8865821
    Abstract: A thermoplastic molding composition, in particular a polyamide molding composition, consisting of, by weight: (A) 20-88%—thermoplastic material; (B) 10-60%—fibrous fillers, formed from (B1) 10-60%—glass fibers, selected from: glass fibers (B1_1) with a non-circular cross section, wherein the axis ratio of the main cross-sectional axis to the secondary cross-sectional axis is at least 2; high-strength glass fibers (B1_2) with a glass composition (substantially SiO2, AlO, and MgO; or mixtures thereof; (B2) 0-20%—glass fibers, different from glass fibers of component (B1) and have a circular cross section; and (B3) 0-20%—further fibrous fillers, different from fibers of (B1) and (B2), not based on glass, and selected from the group: carbon fibers, graphite fibers, aramid fibers, nanotubes; (C) 2-10%—LDS additive or a mixture of LDS additives; (D) 0-30%—particulate filler; (E) 0-2%—further, different additives; the sum of (A)-(E) is 100% by weight.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 21, 2014
    Assignee: EMS-Patent AG
    Inventors: Georg Stoppelmann, Sabine Bertram, Mark Pfleghar
  • Publication number: 20140066560
    Abstract: A thermoplastic moulding composition, in particular a polyamide moulding composition, consisting of, by weight: (A) 20-88%—thermoplastic material; (B) 10-60%—fibrous fillers, formed from (B1) 10-60%—glass fibres, selected from: glass fibres (B1_1) with a non-circular cross section, wherein the axis ratio of the main cross-sectional axis to the secondary cross-sectional axis is at least 2; high-strength glass fibres (B1_2) with a glass composition (substantially SiO2, AlO, and MgO; or mixtures thereof; (B2) 0-20%—glass fibres, different from glass fibres of component (B1) and have a circular cross section; and (B3) 0-20%—further fibrous fillers, different from fibres of (B1) and (B2), not based on glass, and selected from the group: carbon fibres, graphite fibres, aramid fibres, nanotubes; (C) 2-10%—LDS additive or a mixture of LDS additives; (D) 0-30%—particulate filler; (E) 0-2%—further, different additives; the sum of (A)-(E) is 100% by weight.
    Type: Application
    Filed: April 30, 2013
    Publication date: March 6, 2014
    Applicant: EMS-PATENT AG
    Inventors: Georg STOPPELMANN, Sabine BERTRAM, Mark PFLEGHAR
  • Publication number: 20130022766
    Abstract: The invention relates to a method for laser welding two plastic components A, B brought into contact at least in the joining area, wherein component B facing away from the laser radiation consists of a plastic matrix with a white pigmentation of 1.5 5-20 wt.-%, and component A facing the laser radiation, through which the laser beam passes in the welding process, exhibits a plastic matrix. For a given laser wavelength the travel distance of the laser beam through the component A measures at most 10 mm, and given a white pigmentation of the component A in wt.-%, the product of the travel distance of the laser 10 beam through the component A in mm and white pigmentation in wt.-% is less than 1.25, and the travel distance of the laser beam through the component A measures at most 1 mm.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 24, 2013
    Applicant: EMS-PATENT AG
    Inventors: Jens BUTZKE, Stefan Würthner, Nikolai LAMBERTS, Pierre Dübon, Sabine BERTRAM, Heinz CAVIEZEL