Patents by Inventor Sabyasachi Sen

Sabyasachi Sen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210139910
    Abstract: A composition comprising an endothelial progenitor cell genetically modified to have transiently reduced p53 expression for treating diabetic kidney disease and uses thereof
    Type: Application
    Filed: October 2, 2020
    Publication date: May 13, 2021
    Inventor: Sabyasachi SEN
  • Publication number: 20190151358
    Abstract: The invention provides, inter alia, methods for treating vascular deficiencies, including those in diabetic subjects, by transplanting endothelial progenitor cells with transiently reduced p53 expression.
    Type: Application
    Filed: June 26, 2018
    Publication date: May 23, 2019
    Applicant: Baystate Health, Inc.
    Inventor: Sabyasachi Sen
  • Patent number: 10016458
    Abstract: The invention provides, inter alia, methods for treating vascular deficiencies, including those in diabetic subjects, by transplanting endothelial progenitor cells with transiently reduced p53 expression.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: July 10, 2018
    Assignee: Baystate Health, Inc.
    Inventor: Sabyasachi Sen
  • Patent number: 9250386
    Abstract: Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (d1) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: February 2, 2016
    Assignee: Corning Incorporated
    Inventors: James Gary Anderson, Dana Craig Bookbinder, Lisa Carine Chacon, Calvin Thomas Coffey, Adam James Ellison, Gregory Gerard Gausman, Rostislav Radiyevich Khrapko, Stephan Lvovich Logunov, Michael Thomas Murtagh, Clinton Damon Osterhout, Sabyasachi Sen, William Anthony Whedon
  • Publication number: 20150316712
    Abstract: Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (d1) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.
    Type: Application
    Filed: June 25, 2014
    Publication date: November 5, 2015
    Inventors: James Gary Anderson, Dana Craig Bookbinder, Lisa Carine Chacon, Calvin Thomas Coffey, Adam James Ellison, Gregory Gerard Gausman, Rostislav Radiyevich Khrapko, Stephan Lvovich Logunov, Michael Thomas Murtagh, Clinton Damon Osterhout, Sabyasachi Sen, William Anthony Whedon
  • Patent number: 8798412
    Abstract: Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (d1) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventors: Dana C. Bookbinder, Lisa C. Chacon, Adam J. G. Ellison, Rostislav R. Khrapko, Stephan L. Logunov, Michael T. Murtagh, Sabyasachi Sen
  • Publication number: 20130273014
    Abstract: The invention provides, inter alia, methods for treating vascular deficiencies, including those in diabetic subjects, by transplanting endothelial progenitor cells with transiently reduced p53 expression.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 17, 2013
    Applicant: Baystate Health, Inc.
    Inventor: Sabyasachi Sen
  • Publication number: 20100330274
    Abstract: Planar waveguides having quantum dots and methods of manufacture of the planar waveguide are described.
    Type: Application
    Filed: September 13, 2010
    Publication date: December 30, 2010
    Inventors: Nicholas Francis Borrelli, Sabyasachi Sen
  • Patent number: 7817896
    Abstract: Planar waveguides having quantum dots and methods of manufacture of the planar waveguide are described.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: October 19, 2010
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Sabyasachi Sen
  • Publication number: 20060245710
    Abstract: Planar waveguides having quantum dots and methods of manufacture of the planar waveguide are described.
    Type: Application
    Filed: April 13, 2006
    Publication date: November 2, 2006
    Inventors: Nicholas Borrelli, Sabyasachi Sen
  • Publication number: 20060179879
    Abstract: The invention is directed to ultra-low expansion glasses to which adjustments have been made to selected variables in order to improve the properties of the glasses, and particularly to lower the expansivity of the glasses. The glasses are titania-doped silica glasses. The variables being adjusted include an adjustment in ?-OH level; an adjustment to the cooling rate of the molten glass material through the setting point; and the addition of selected dopants to impact the CTE behavior.
    Type: Application
    Filed: December 21, 2005
    Publication date: August 17, 2006
    Inventors: Adam Ellison, Kenneth Hrdina, Sabyasachi Sen
  • Publication number: 20060135342
    Abstract: A method of making an alkali metal silicate glass includes preparing an alkali metal feedstock having a first desired level of alkali metal, the alkali metal feedstock being essentially free of an element that absorbs between 0.8 and 2.5 ?m in any valence state. The method also includes combining and mixing the alkali metal feedstock with at least one silicate feedstock to form a precursor material having a second desired level of alkali metal and melting the precursor material to form molten glass.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 22, 2006
    Inventors: James Anderson, Adam Ellison, Sabyasachi Sen
  • Patent number: 6917740
    Abstract: An optical fiber is disclosed in which the core region of the optical fiber is doped with Cl and F in order to reduce the viscosity mismatch between the core region and the adjacent cladding region. In one embodiment of the invention, the optical fiber is a single-mode step index optical fiber having a core region doped with Cl and F in an amount effective to produce a difference in temperature between the glass transition temperature of the core region and the glass transition temperature of the adjacent cladding region of less than about 200° C.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: July 12, 2005
    Assignee: Corning Incorporated
    Inventors: Heather D. Boek, Michael T. Murtagh, Sabyasachi Sen
  • Publication number: 20050063663
    Abstract: Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (d1) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.
    Type: Application
    Filed: August 27, 2004
    Publication date: March 24, 2005
    Inventors: James Anderson, Dana Bookbinder, Lisa Chacon, Calvin Coffey, Adam Ellison, Gregory Gausman, Rostislav Khrapko, Stephan Logunov, Michael Murtagh, Clinton Osterhout, Sabyasachi Sen, William Whedon
  • Publication number: 20040240814
    Abstract: An optical fiber is disclosed in which the core region of the optical fiber is doped with Cl and F in order to reduce the viscosity mismatch between the core region and the adjacent cladding region. In one embodiment of the invention, the optical fiber is a single-mode step index optical fiber having a core region doped with Cl and F in an amount effective to produce a difference in temperature between the glass transition temperature of the core region and the glass transition temperature of the adjacent cladding region of less than about 200° C.
    Type: Application
    Filed: May 30, 2003
    Publication date: December 2, 2004
    Inventors: Heather D. Boek, Michael T. Murtagh, Sabyasachi Sen
  • Patent number: 6813908
    Abstract: The invention includes inventive methods of treating a soot preform. One method includes heating a soot preform to a temperature of less than about 1000° C. and exposing the preform to a substantially halide free reducing agent. Preferred reducing agents include carbon monoxide and sulfur dioxide. Another inventive method of treating the preform includes exposing the preform, in a furnace, to a substantially non-chlorine containing atmosphere comprising carbon monoxide. The preform is heated to a temperature of at least about 1000° C. Preferably this method is incorporated into the process for making an optical fiber. An additional method of treating the preform includes doping the preform with fluorine and exposing the fluorine doped preform to a substantially chlorine free atmosphere comprising at least carbon monoxide at a temperature of at least 1100° C., thereby reacting excess oxygen present in the furnace.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: November 9, 2004
    Assignee: Corning Incorporated
    Inventors: Kintu O. Early, Claude E. Lacy, Susan L. Schiefelbein, Sabyasachi Sen, Wanda J. Walczak, Joseph M. Whalen, Tiffany L. James, Hazel B. Matthews, Chukwuemeka B. Onuh
  • Patent number: 6792187
    Abstract: Glasses in the Ca—Al—Si system are useful in forming optical components for use in telecommunication systems. The glasses include, in mole percent: SiO2 present in an amount of about 6 to about 60 percent, Ga2O3, Al2O3, or a combination thereof present in an amount of about 12 to about 31 percent, and CaO present in an amount of about 20 to about 65 percent.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: September 14, 2004
    Assignee: Corning Incorporated
    Inventors: Ronald L. Andrus, Stephan L. Logunov, Sabyasachi Sen
  • Publication number: 20040114894
    Abstract: Glasses in the Ca—Al—Si system are useful in forming optical components for use in telecommunication systems. The glasses include, in mole percent: SiO2 present in an amount of about 6 to about 60 percent, Ga2O3, Al2O3, or a combination thereof present in an amount of about 12 to about 31 percent, and CaO present in an amount of about 20 to about 65 percent.
    Type: Application
    Filed: December 17, 2002
    Publication date: June 17, 2004
    Inventors: Ronald L. Andrus, Stephan L. Logunov, Sabyasachi Sen
  • Publication number: 20020197035
    Abstract: The invention includes inventive methods of treating a soot preform. One method includes heating a soot preform to a temperature of less than about 1000 ° C. and exposing the preform to a substantially halide free reducing agent. Preferred reducing agents include carbon monoxide and sulfur dioxide. Another inventive method of treating the preform includes exposing the preform, in a furnace, to a substantially non-chlorine containing atmosphere comprising carbon monoxide. The preform is heated to a temperature of at least about 1000° C. Preferably this method is incorporated into the process for making an optical fiber. An additional method of treating the preform includes doping the preform with fluorine and exposing the fluorine doped preform to a substantially chlorine free atmosphere comprising at least carbon monoxide at a temperature of at least 1100° C., thereby reacting excess oxygen present in the furnace.
    Type: Application
    Filed: December 12, 2001
    Publication date: December 26, 2002
    Inventors: Kintu O. Early, Claude E. Lacy, Susan L. Schiefelbein, Sabyasachi Sen, Wanda J. Walczak, Joseph M. Whalen, Tiffany L. James, Hazel B. Matthews, Chukwuemeka B. Onuh