Patents by Inventor Sadie L. Fieni

Sadie L. Fieni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11255825
    Abstract: Methods that provide wrinkle characterization and performance prediction for wrinkled composite structures using automated structural analysis. In accordance with some embodiments, the method combines the use of B-scan ultrasound data, automated optical measurement of wrinkles and geometry of cross-sections, and finite element analysis of wrinkled composite structure to provide the ability to assess the actual significance of a detected wrinkle relative to the intended performance of the structure. The disclosed method uses an ultrasonic inspection system that has been calibrated by correlating ultrasonic B-scan data acquired from reference standards with measurements of optical cross sections (e.g., micrographs) of those reference standards.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: February 22, 2022
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Jill P. Bingham, Hong Hue Tat, Yuan-Jye Wu, John M. Pryor, Sadie L. Fieni, Mark D. Winters, Kathryn T. Moore, James C. Kennedy, Clayton M. Little, John Z. Lin
  • Publication number: 20210245457
    Abstract: A method is provided that includes monitoring a process of manufacturing a composite structure that includes introducing a matrix material to a reinforcement material, applying the reinforcement material into a mold cavity or onto a mold surface with a first machine tool, subjecting the matrix material to a melding event with a second machine tool, and inspecting the composite structure. Data including at least one of first measurement data, error data or second measurement data is determined, and an analysis of the data is performed to summarize the data and thereby produce feedback data including a summary of the data. At least one of the process, the first machine tool or the second machine tool is adjusted based on feedback including the summary, and for manufacture of a next composite structure.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 12, 2021
    Inventors: Russell A. Strope, Gary E. Georgeson, Seeran Prajapati, Sadie L. Fieni, John W. Adams
  • Patent number: 11072133
    Abstract: A method is provided that includes monitoring a process of manufacturing a composite structure that includes introducing a matrix material to a reinforcement material, applying the reinforcement material into a mold cavity or onto a mold surface with a first machine tool, subjecting the matrix material to a melding event with a second machine tool, and inspecting the composite structure. Data including at least one of first measurement data, error data or second measurement data is determined, and an analysis of the data is performed to summarize the data and thereby produce feedback data including a summary of the data. At least one of the process, the first machine tool or the second machine tool is adjusted based on feedback including the summary, and for manufacture of a next composite structure.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: July 27, 2021
    Assignee: The Boeing Company
    Inventors: Russell A. Strope, Gary E. Georgeson, Seeran Prajapati, Sadie L. Fieni, John W. Adams
  • Publication number: 20180120268
    Abstract: Methods that provide wrinkle characterization and performance prediction for wrinkled composite structures using automated structural analysis. In accordance with some embodiments, the method combines the use of B-scan ultrasound data, automated optical measurement of wrinkles and geometry of cross-sections, and finite element analysis of wrinkled composite structure to provide the ability to assess the actual significance of a detected wrinkle relative to the intended performance of the structure. The disclosed method uses an ultrasonic inspection system that has been calibrated by correlating ultrasonic B-scan data acquired from reference standards with measurements of optical cross sections (e.g., micrographs) of those reference standards.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 3, 2018
    Applicant: The Boeing Company
    Inventors: Gary E. Georgeson, Jill P. Bingham, Hong Hue Tat, Yuan-Jye Wu, John M. Pryor, Sadie L. Fieni, Mark D. Winters, Kathryn T. Moore, James C. Kennedy, Clayton M. Little, John Z. Lin