Patents by Inventor Saeed Alerasool

Saeed Alerasool has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220258141
    Abstract: The present disclosure provides catalyst compositions capable of reducing nitrogen oxide (NOx) emissions in engine exhaust, catalyst articles coated with such compositions, and processes for preparing such catalyst compositions and articles. The catalyst compositions include metal ion-exchanged zeolites useful for selective catalytic reduction (SCR) of NOx. Further provided is an exhaust gas treatment system including such catalytic articles, and methods for reducing NOx in an exhaust gas stream using such catalytic articles.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 18, 2022
    Applicant: BASF CORPORATION
    Inventors: Yi Liu, Brian T. Jones, Donald H. Reeder, Eric George Klauber, Oliver Seel, Torsten Neubauer, Saeed Alerasool, James Dale Hoggard, John Robert White, Claudia Zabel
  • Patent number: 11028749
    Abstract: Systems for abatement of pollutants in an exhaust gas stream of an internal combustion engine including a hydrogen injection article configured to introduce hydrogen upstream of a catalytic article are effective for the abatement of carbon monoxide and/or hydrocarbons and/or nitrogen oxides. The introduction of hydrogen may be intermittent and/or during a cold-start period.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: June 8, 2021
    Assignee: BASF CORPORATION
    Inventors: Shiang Sung, Saeed Alerasool
  • Publication number: 20200032688
    Abstract: Systems for abatement of pollutants in an exhaust gas stream of an internal combustion engine including a hydrogen injection article configured to introduce hydrogen upstream of a catalytic article are effective for the abatement of carbon monoxide and/or hydrocarbons and/or nitrogen oxides. The introduction of hydrogen may be intermittent and/or during a cold-start period.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Shiang Sung, Saeed Alerasool
  • Publication number: 20150343375
    Abstract: Molecular sieves, improved methods for their synthesis, and catalysts, systems and methods of using these molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are described. The molecular sieves are made using a tailored colloid including an alumina source, a silica source and a structure directing agent.
    Type: Application
    Filed: August 7, 2015
    Publication date: December 3, 2015
    Inventors: Ahmad Moini, Saeed Alerasool, Subramanian Prasad
  • Patent number: 9174849
    Abstract: Molecular sieves, improved methods for their synthesis, and catalysts, systems and methods of using these molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are described. The molecular sieves are made using a tailored colloid including an alumina source, a silica source and a structure directing agent.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: November 3, 2015
    Inventors: Ahmad Moini, Saeed Alerasool, Subramanian Prasad
  • Patent number: 9023753
    Abstract: A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: May 5, 2015
    Assignees: Lummus Technology Inc., BASF Corporation
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Shane Kleindienst, Wolfgang Ruettinger, Saeed Alerasool
  • Patent number: 8835347
    Abstract: Disclosed are dehydrogenation catalyst composites and methods of making the dehydrogenation catalyst composites. The dehydrogenation catalyst composites contain alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide. Also disclosed are methods of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 16, 2014
    Assignee: BASF Corporation
    Inventors: Wolfgang Ruettinger, Michael Joseph Breen, Richard Jacubinas, Saeed Alerasool
  • Publication number: 20130252804
    Abstract: A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicants: BASF CORPORATION, LUMMUS TECHNOLOGY INC.
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Shane Kleindienst, Wolfgang Ruettinger, Saeed Alerasool
  • Patent number: 8440874
    Abstract: A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: May 14, 2013
    Assignees: Lummus Technology Inc., BASF Corporation
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Shane Kleindienst, Wolfgang Ruettinger, Saeed Alerasool
  • Publication number: 20130052125
    Abstract: Molecular sieves, improved methods for their synthesis, and catalysts, systems and methods of using these molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are described. The molecular sieves are made using a tailored colloid including an alumina source, a silica source and a structure directing agent.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: BASF Corporation
    Inventors: Ahmad Moini, Saeed Alerasool, Subramanian Prasad
  • Patent number: 8293199
    Abstract: Disclosed are processes for the preparation of copper containing molecular sieves with the CHA structure having a silica to alumina mole ratio greater than about 10, wherein the copper exchange step is conducted via wet state exchanged and prior to the coating step and wherein in the copper exchange step a liquid copper solution is used wherein the concentration of copper is in the range of about 0.001 to about 0.25 molar using copper acetate and/or an ammoniacal solution of copper ions as copper source. Catalysts made by the processes, catalyst systems and methods of treating exhaust gas with the molecular sieves and catalysts are also disclosed.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: October 23, 2012
    Assignee: BASF Corporation
    Inventors: Tilman W. Beutel, Ivor Bull, Ahmad Moini, Michael Breen, Martin Dieterle, Saeed Alerasool, Barbara Slawski
  • Patent number: 8293198
    Abstract: Disclosed are processes for the preparation of copper containing molecular sieves with the CHA structure wherein the copper is exchanged into the Na+-form of the Chabazite, using a liquid copper solution wherein the concentration of copper is in the range of about 0.001 to about 0.4 molar. Also described are copper containing molecular sieves with the CHA structure, catalysts incorporating molecular sieves, systems and methods for their use.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: October 23, 2012
    Assignee: BASF Corporation
    Inventors: Tilman W. Beutel, Ivor Bull, Ahmad Moini, Michael Breen, Martin Dieterle, Saeed Alerasool, Xinsheng Liu, Wenyong Lin, Barbara Slawski, Ulrich Mueller
  • Publication number: 20110165051
    Abstract: Disclosed are processes for the preparation of copper containing molecular sieves with the CHA structure wherein the copper is exchanged into the Na+-form of the Chabazite, using a liquid copper solution wherein the concentration of copper is in the range of about 0.001 to about 0.4 molar. Also described are copper containing molecular sieves with the CHA structure, catalysts incorporating molecular sieves, systems and methods for their use.
    Type: Application
    Filed: December 16, 2010
    Publication date: July 7, 2011
    Applicant: BASF Corporation
    Inventors: Tilman W. Beutel, Ivor Bull, Ahmad Moini, Michael Breen, Martin Dieterle, Saeed Alerasool, Xinsheng Liu, Wenyong Lin, Barbara Slawski, Ulrich Mueller
  • Publication number: 20110165052
    Abstract: Disclosed are processes for the preparation of copper containing molecular sieves with the CHA structure having a silica to alumina mole ratio greater than about 10, wherein the copper exchange step is conducted via wet state exchanged and prior to the coating step and wherein in the copper exchange step a liquid copper solution is used wherein the concentration of copper is in the range of about 0.001 to about 0.25 molar using copper acetate and/or an ammoniacal solution of copper ions as copper source. Catalysts made by the processes, catalyst systems and methods of treating exhaust gas with the molecular sieves and catalysts are also disclosed.
    Type: Application
    Filed: December 16, 2010
    Publication date: July 7, 2011
    Applicant: BASF Corporation
    Inventors: Tilman W. Beutel, Ivor Bull, Ahmad Moini, Michael Breen, Martin Dieterle, Saeed Alerasool, Barbara Slawski
  • Publication number: 20100312035
    Abstract: Disclosed are dehydrogenation catalyst composites and methods of making the dehydrogenation catalyst composites. The dehydrogenation catalyst composites contain alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide. Also disclosed are methods of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Applicant: BASF CATALYSTS LLC
    Inventors: Wolfgang Ruettinger, Michael Joseph Breen, Richard Jacubinas, Saeed Alerasool
  • Publication number: 20100056839
    Abstract: A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 4, 2010
    Applicants: LUMMUS TECHNOLOGY INC., BASF CATALYSTS LLC
    Inventors: Bala Ramachandran, Sukwon Choi, Robert J. Gartside, Shane Kleindienst, Wolfgang Ruettinger, Saeed Alerasool
  • Patent number: 7279611
    Abstract: One aspect of the invention relates to a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide. The invention also relates to methods of making the dehydrogenation catalyst composite. Another aspect of the invention relates to method of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: October 9, 2007
    Assignee: BASF Catalysts LLC
    Inventors: Saeed Alerasool, Harold E. Manning
  • Publication number: 20060094914
    Abstract: One aspect of the invention relates to a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide. The invention also relates to methods of making the dehydrogenation catalyst composite. Another aspect of the invention relates to method of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Application
    Filed: December 12, 2005
    Publication date: May 4, 2006
    Inventors: Saeed Alerasool, Harold Manning
  • Patent number: 7012038
    Abstract: One aspect of the invention relates to a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide. The invention also relates to methods of making the dehydrogenation catalyst composite. Another aspect of the invention relates to method of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: March 14, 2006
    Assignee: Engelhard Corporation
    Inventors: Saeed Alerasool, Harold E. Manning
  • Publication number: 20030232720
    Abstract: One aspect of the invention relates to a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide. The invention also relates to methods of making the dehydrogenation catalyst composite. Another aspect of the invention relates to method of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Application
    Filed: June 12, 2002
    Publication date: December 18, 2003
    Inventors: Saeed Alerasool, Harold E. Manning