Patents by Inventor Saeid Esmaeilzadeh

Saeid Esmaeilzadeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8771585
    Abstract: The invention concerns a method for manufacturing a ceramic material with pseudo-isotropic microstructure. The method for tailoring the microstructure for manufacturing of sintered ceramic components involves a spark plasma sintering (SPS) process. By performing the SPS process in at least two steps it is possible to separate densification from grain growth. An initial sintering step at a first temperature and a first pressure, followed by a controlled grain growth step at a higher temperature and lower pressure makes it possible to manufacture ceramic components with controlled microstructure and improved mechanical properties.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 8, 2014
    Assignee: AB SKF
    Inventors: Zhijian Shen, Saeid Esmaeilzadeh, Katarina Flodstrom, Charlotte Vieillard
  • Patent number: 8772190
    Abstract: The invention concerns a sintered ceramic component of silicon nitride or sialon suitable as rolling element in a bearing and a manufacturing method for making such ceramic components. The ceramic component has high density and a homogeneous and fine microstructure, giving the component excellent mechanical properties. Manufacturing of the sintered ceramic component by SPS is cost-effective and rapid.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 8, 2014
    Assignee: AB SKF
    Inventors: Zhijian Shen, Saeid Esmaeilzadeh, Katarina Flodstrom, Charlotte Vieillard
  • Publication number: 20110266719
    Abstract: The invention concerns a sintered ceramic component of silicon nitride or sialon suitable as rolling element in a bearing and a manufacturing method for making such ceramic components. The ceramic component has high density and a homogeneous and fine microstructure, giving the component excellent mechanical properties. Manufacturing of the sintered ceramic component by SPS is cost-effective and rapid.
    Type: Application
    Filed: August 29, 2008
    Publication date: November 3, 2011
    Applicant: AB SKF
    Inventors: Zhijian Shen, Saeid Esmaeilzadeh, Katarina Flodstrom, Charlotte Vieillard
  • Publication number: 20110260368
    Abstract: The invention concerns a method for manufacturing a ceramic material with pseudo-isotropic microstructure. The method for tailoring the microstructure for manufacturing of sintered ceramic components involves a spark plasma sintering (SPS) process. By performing the SPS process in at least two steps it is possible to separate densification from grain growth. An initial sintering step at a first temperature and a first pressure, followed by a controlled grain growth step at a higher temperature and lower pressure makes it possible to manufacture ceramic components with controlled microstructure and improved mechanical properties.
    Type: Application
    Filed: August 29, 2008
    Publication date: October 27, 2011
    Applicant: AB SKF
    Inventors: Zhijian Shen, Saeid Esmaeilzadeh, Katarina Flodstrom, Charlotte Vieillard
  • Publication number: 20110236713
    Abstract: The invention relates to a functionally graded material shape (1) where a first material (M1) is fused with a second material (M2) through sintering and a method of production of said functionally graded material shape (1). Said first material (M1) has a first coefficient of thermal expansion (?1) and said second material (M2) has a second coefficient of thermal expansion (?2), differing from the first coefficient of thermal expansion (?1). The invention is characterized in that the shape (1) further comprises a third material (M3) adapted to, together with M1 and M2, create an intermediate composite material phase intermixed between the first and the second materials (M1, M2). Said third material (M3) has a coefficient of thermal expansion (?3) intermediate between the first coefficient of thermal expansion (?1) of the first material (M1) and the second coefficient of thermal expansion (?2) of the second material (M2).
    Type: Application
    Filed: February 14, 2011
    Publication date: September 29, 2011
    Applicant: Diamorph AB
    Inventors: Mohamed Radwan, Katarina Flodstrom, Saeid Esmaeilzadeh
  • Patent number: 7498284
    Abstract: A nitride glass with the general formula ?x?y?z is provided wherein ? is a glass modifier comprising at least one electropositive element. ? comprises Si, B, Ge, a and/or Al. ? is N or N together with O, whereby the atomic ratio of O:N is in the interval from 65:35 to 0:100.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: March 3, 2009
    Assignee: Diamorph AB
    Inventor: Saeid Esmaeilzadeh
  • Patent number: 7294596
    Abstract: A sintered ceramic material comprises a crystalline phase and an intergranular phase comprising a glass phase. The material is manufactured from a starting powder being mixed with an additive comprising one or more metal from a group of Li, Na, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Th, Pa or U. The additive is in non oxide form, or in a form which transforms to a metal or nitride during a synthesis in nitrogen atmosphere and the resulting glass phase having a high nitrogen content with a N:O ratio higher than 35:65 and a glass transition temperature above 950° C.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: November 13, 2007
    Assignee: Diamorph Ceramic AB
    Inventor: Saeid Esmaeilzadeh
  • Publication number: 20070225150
    Abstract: A sintered ceramic material comprises a crystalline phase and an intergranular phase comprising a glass phase. The material is manufactured from a starting powder being mixed with an additive comprising one or more metal from a group of Li, Na, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Th, Pa or U. The additive is in non oxide form, or in a form which transforms to a metal or nitride during a synthesis in nitrogen atmosphere and the resulting glass phase having a high nitrogen content with a N:O ratio higher than 35:65 and a glass transition temperature above 950° C.
    Type: Application
    Filed: March 14, 2005
    Publication date: September 27, 2007
    Applicant: Diamorph Ceramic AB
    Inventor: Saeid Esmaeilzadeh
  • Publication number: 20060264314
    Abstract: The invention relates to a new group of nitrogen rich ?-sialon compositions with the general formula MxSi12(m+n)Al(m+n)OnN16-n, where x (=m/v)?2, v is the average valency of the M cation, and the ratio m/(m+n)?0.7. The new compositions obtained by this method have one of the following elements M, or combinations thereof, in the cavity of the ?-sialon structure: Li, Na, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Th, Pa or U.
    Type: Application
    Filed: March 14, 2005
    Publication date: November 23, 2006
    Applicant: Diamorph Ceramic AB
    Inventor: Saeid Esmaeilzadeh
  • Publication number: 20060128551
    Abstract: A nitride glass with the general formula ?x?y?z is provided wherein ? is a glass modifier comprising at least one electropositive element. ? comprises Si, B, Ge, Ga and/or Al. ? is N or N together with O, whereby the atomic ratio of O:N is in the interval from 65:35 to 0:100.
    Type: Application
    Filed: January 14, 2004
    Publication date: June 15, 2006
    Inventor: Saeid Esmaeilzadeh