Patents by Inventor Sagar Rakshit

Sagar Rakshit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10458895
    Abstract: Methods, apparatus, and other embodiments predict response to pemetrexed based chemotherapy. One example apparatus includes an image acquisition circuit that acquires a radiological image of a region of tissue demonstrating NSCLC that includes a region of interest (ROI) defining a tumoral volume, a peritumoral volume definition circuit that defines a peritumoral volume based on the boundary of the ROI and a distance, a feature extraction circuit that extracts a set of discriminative tumoral features from the tumoral volume, and a set of discriminative peritumoral features from the peritumoral volume, and a classification circuit that classifies the ROI as a responder or a non-responder using a machine learning classifier based, at least in part, on the set of discriminative tumoral features and the set of discriminative peritumoral features.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: October 29, 2019
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Vamsidhar Velcheti, Mahdi Orooji, Sagar Rakshit, Mehdi Alilou, Niha Beig
  • Patent number: 10346975
    Abstract: Methods, apparatus, and other embodiments predict tumor infiltrating lymphocyte (TIL) density from pre-surgical computed tomography images of a region of tissue demonstrating non-small cell lung cancer (NSCLC). One example apparatus includes a set of circuits that includes an image acquisition circuit that accesses a radiological image of a region of tissue demonstrating cancerous pathology, where the radiological image has a plurality of pixels, and where the radiological image includes an annotated region of interest (ROI), a feature extraction circuit that extracts a set of radiomic features from the ROI, where the set of radiomic features includes at least two texture features and at least one shape feature, and a classification circuit that comprises a machine learning classifier that classifies the ROI as high tumor infiltrating lymphocyte (TIL) density, or low TIL density, based, at least in part, on the set of radiomic features.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: July 9, 2019
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Vamsidhar Velcheti, Mahdi Orooji, Sagar Rakshit, Mehdi Alilou, Niha Beig
  • Publication number: 20170352157
    Abstract: Methods, apparatus, and other embodiments predict tumor infiltrating lymphocyte (TIL) density from pre-surgical computed tomography images of a region of tissue demonstrating non-small cell lung cancer (NSCLC). One example apparatus includes a set of circuits that includes an image acquisition circuit that accesses a radiological image of a region of tissue demonstrating cancerous pathology, where the radiological image has a plurality of pixels, and where the radiological image includes an annotated region of interest (ROI), a feature extraction circuit that extracts a set of radiomic features from the ROI, where the set of radiomic features includes at least two texture features and at least one shape feature, and a classification circuit that comprises a machine learning classifier that classifies the ROI as high tumor infiltrating lymphocyte (TIL) density, or low TIL density, based, at least in part, on the set of radiomic features.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Inventors: Anant Madabhushi, Vamsidhar Velcheti, Mahdi Orooji, Sagar Rakshit, Mehdi Alilou, Niha Beig
  • Publication number: 20170351939
    Abstract: Methods, apparatus, and other embodiments predict response to pemetrexed based chemotherapy. One example apparatus includes an image acquisition circuit that acquires a radiological image of a region of tissue demonstrating NSCLC that includes a region of interest (ROI) defining a tumoral volume, a peritumoral volume definition circuit that defines a peritumoral volume based on the boundary of the ROI and a distance, a feature extraction circuit that extracts a set of discriminative tumoral features from the tumoral volume, and a set of discriminative peritumoral features from the peritumoral volume, and a classification circuit that classifies the ROI as a responder or a non-responder using a machine learning classifier based, at least in part, on the set of discriminative tumoral features and the set of discriminative peritumoral features.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Anant Madabhushi, Vamsidhar Velcheti, Mahdi Orooji, Sagar Rakshit, Mehdi Alilou, Niha Beig