Patents by Inventor Sage Toko Garrett DOSHAY

Sage Toko Garrett DOSHAY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230280511
    Abstract: Embodiments of the present disclosure relate to methods for fabricating optical devices. One embodiment of the method includes disposing a structure material layer on a surface of a substrate and disposing a patterned photoresist over the structure material layer. The patterned photoresist has at least one device portion and at least one auxiliary portion. Each device portion and each auxiliary portion exposes unmasked portions of the structure material layer. The unmasked portions of structure material layer corresponding to each device portion and each auxiliary portion are etched. The etching the unmasked portions forms at least one optical device having device structures corresponding to the unmasked portions of at least one device portion and at least one auxiliary region having auxiliary structures corresponding to the unmasked portions of at least one auxiliary portion.
    Type: Application
    Filed: May 10, 2023
    Publication date: September 7, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET, Chien-An CHEN, Pinkesh Rohit SHAH
  • Patent number: 11681083
    Abstract: Embodiments of the present disclosure relate to methods for fabricating optical devices. One embodiment of the method includes disposing a structure material layer on a surface of a substrate and disposing a patterned photoresist over the structure material layer. The patterned photoresist has at least one device portion and at least one auxiliary portion. Each device portion and each auxiliary portion exposes unmasked portions of the structure material layer. The unmasked portions of structure material layer corresponding to each device portion and each auxiliary portion are etched. The etching the unmasked portions forms at least one optical device having device structures corresponding to the unmasked portions of at least one device portion and at least one auxiliary region having auxiliary structures corresponding to the unmasked portions of at least one auxiliary portion.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: June 20, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sage Toko Garrett Doshay, Rutger Meyer Timmerman Thijssen, Ludovic Godet, Chien-An Chen, Pinkesh Rohit Shah
  • Patent number: 11626321
    Abstract: Systems and methods herein are related to the formation of optical devices including stacked optical element layers using silicon wafers, glass, or devices as substrates. The optical elements discussed herein can be fabricated on temporary or permanent substrates. In some examples, the optical devices are fabricated to include transparent substrates or devices including charge-coupled devices (CCD), or complementary metal-oxide semiconductor (CMOS) image sensors, light-emitting diodes (LED), a micro-LED (uLED) display, organic light-emitting diode (OLED) or vertical-cavity surface-emitting laser (VCSELs). The optical elements can have interlayers formed in between optical element layers, where the interlayers can range in thickness from 1 nm to 3 mm.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: April 11, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ludovic Godet, Wayne McMillan, Rutger Meyer Timmerman Thijssen, Naamah Argaman, Tapashree Roy, Sage Toko Garrett Doshay
  • Publication number: 20220336270
    Abstract: Systems and methods herein are related to the formation of optical devices including stacked optical element layers using silicon wafers, glass, or devices as substrates. The optical elements discussed herein can be fabricated on temporary or permanent substrates. In some examples, the optical devices are fabricated to include transparent substrates or devices including charge-coupled devices (CCD), or complementary metal-oxide semiconductor (CMOS) image sensors, light-emitting diodes (LED), a micro-LED (uLED) display, organic light-emitting diode (OLED) or vertical-cavity surface-emitting laser (VCSELs). The optical elements can have interlayers formed in between optical element layers, where the interlayers can range in thickness from 1 nm to 3 mm.
    Type: Application
    Filed: July 1, 2022
    Publication date: October 20, 2022
    Inventors: Ludovic GODET, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN, Naamah ARGAMAN, Tapashree ROY, Sage Toko Garrett DOSHAY
  • Publication number: 20220018792
    Abstract: Embodiments of the present disclosure relate to optical devices having one or more metrology features and a method of optical device metrology that provides for metrology tool location recognition with negligible impact to optical performance of the optical devices. The optical device includes one or more target features. The target features described herein provide for metrology tool location recognition with negligible impact to optical performance of the optical devices. In metrology processes, the target features allow for metrology tools to determine one or more locations of the optical device having a macroscale surface area. The target features correspond to one or more structures merged together, one or more structures merged together surrounded by one or more structures that have been removed, or one or more structures that have been removed having one or more profiles defined by adjacent structures to the target features.
    Type: Application
    Filed: June 28, 2021
    Publication date: January 20, 2022
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20220018998
    Abstract: Embodiments of the present disclosure generally relate to optical devices. Specifically, embodiments of the present disclosure relate to optical devices with one or more optical component circuits. The optical devices including one or more optical component circuits prevent the user from exposure to light when a conductive pathway is interrupted via aperture breakage, for example, from the user dropping the substrate, or from the user dropping the optical device. The conductive pathway allows for current to flow from a power source through the apertures and to one or more light sources and, in some embodiments, one or more light detectors. Aperture breakage resulting in the interruption of the conductive pathway prevents current from being provided to the one or more light sources and/or one or more light detectors to prevent (e.g., automatically prevent) light exposure to the user.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 20, 2022
    Inventors: Sage Toko Garrett DOSHAY, Naamah ARGAMAN
  • Publication number: 20220011471
    Abstract: Embodiments described herein relate to encapsulated optical devices and methods of forming optical devices with controllable air-gapped encapsulation. In one embodiment, a plurality of openings are formed in a support layer surrounding the plurality of optical device structures to create a high refractive index contrast between the optical device structures, the support layer, and the openings. In another embodiment, sacrificial material is disposed in-between the optical device structures and then an encapsulation layer is disposed on the optical device structures. The sacrificial material is removed, forming a space bounded by the encapsulation layer, the substrate, and each of the optical device structures. In yet another embodiment, the encapsulation layer is disposed over the optical device structures forming a space bounded by the encapsulation layer, the substrate, and each of the optical device structures.
    Type: Application
    Filed: June 22, 2021
    Publication date: January 13, 2022
    Inventors: Sage Toko Garrett DOSHAY, Kenichi OHNO, Rutger MEYER TIMMERMAN THIJSSEN, Russell Chin Yee TEO, Jinrui GUO
  • Publication number: 20200386926
    Abstract: Embodiments of the present disclosure relate to methods for fabricating optical devices. One embodiment of the method includes disposing a structure material layer on a surface of a substrate and disposing a patterned photoresist over the structure material layer. The patterned photoresist has at least one device portion and at least one auxiliary portion. Each device portion and each auxiliary portion exposes unmasked portions of the structure material layer. The unmasked portions of structure material layer corresponding to each device portion and each auxiliary portion are etched. The etching the unmasked portions forms at least one optical device having device structures corresponding to the unmasked portions of at least one device portion and at least one auxiliary region having auxiliary structures corresponding to the unmasked portions of at least one auxiliary portion.
    Type: Application
    Filed: May 21, 2020
    Publication date: December 10, 2020
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET, Chien-An CHEN, Pinkesh Rohit SHAH
  • Publication number: 20200386911
    Abstract: Embodiments described herein relate to methods for fabricating optical devices. The methods described herein enable the fabrication of one or more optical devices on a substrate with apertures surrounding each of the optical devices having a plurality of structures. One embodiment of the methods described herein includes disposing an aperture material layer on a surface of a substrate, disposing a structure material layer over the apertures and the surface of the substrate, disposing a hardmask over the apertures and the structure material layer, disposing a patterned photoresist over the hardmask, the patterned photoresist defining exposed hardmask portions, removing the exposed hardmask portions to expose structure portions of the structure material layer, and removing the structure portions to form a plurality of structures between the apertures over regions of the surface of the substrate.
    Type: Application
    Filed: May 18, 2020
    Publication date: December 10, 2020
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET, Chien-An CHEN, Pinkesh Rohit SHAH
  • Publication number: 20200286778
    Abstract: Systems and methods herein are related to the formation of optical devices including stacked optical element layers using silicon wafers, glass, or devices as substrates. The optical elements discussed herein can be fabricated on temporary or permanent substrates. In some examples, the optical devices are fabricated to include transparent substrates or devices including charge-coupled devices (CCD), or complementary metal-oxide semiconductor (CMOS) image sensors, light-emitting diodes (LED), a micro-LED (uLED) display, organic light-emitting diode (OLED) or vertical-cavity surface-emitting laser (VCSELs). The optical elements can have interlayers formed in between optical element layers, where the interlayers can range in thickness from 1 nm to 3 mm.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Inventors: Ludovic GODET, Wayne MCMILLAN, Rutger MEYER TIMMERMAN THIJSSEN, Naamah ARGAMAN, Tapashree ROY, Sage Toko Garrett DOSHAY
  • Publication number: 20200194319
    Abstract: Embodiments described herein relate to semiconductor processing. More specifically, embodiments described herein relate to processing of transparent substrates. A film is deposited on a backside of the transparent substrate. A thickness of the film is determined such that the film reflects particular wavelengths of light and substantially prevents bowing of the substrate. The film provides constructive interference to the particular wavelengths of light.
    Type: Application
    Filed: October 25, 2019
    Publication date: June 18, 2020
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET, Mingwei ZHU, Naamah ARGAMAN, Wayne MCMILLAN, Siddarth KRISHNAN