Patents by Inventor Sai Bhavaraju

Sai Bhavaraju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9611555
    Abstract: An electrochemical cell having a cation-conductive ceramic membrane and an acidic anolyte. Generally, the cell includes an anolyte compartment and a catholyte compartment that are separated by a cation-conductive membrane. A diffusion barrier is disposed in the anolyte compartment between the membrane and an anode. In some cases, a catholyte is channeled into a space between the barrier and the membrane. In other cases, a chemical that maintains an acceptably high pH adjacent the membrane is channeled between the barrier and the membrane. In still other cases, some of the catholyte is channeled between the barrier and the membrane while another portion of the catholyte is channeled between the barrier and the anode. In each case, the barrier and the chemicals channeled between the barrier and the membrane help maintain the pH of the liquid contacting the anolyte side of the membrane at an acceptably high level.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: April 4, 2017
    Assignee: CERAMATEC, INC.
    Inventor: Sai Bhavaraju
  • Publication number: 20170088962
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Application
    Filed: October 11, 2016
    Publication date: March 30, 2017
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Patent number: 9553337
    Abstract: Provided is a sodium secondary battery capable of operating at a low temperature. More particularly, the sodium secondary battery according to the present invention includes: an anode containing sodium; a cathode containing a transition metal and an alkali metal halide; and a sodium ion conductive solid electrolyte provided between the anode and the cathode, wherein the cathode is impregnated in a molten salt electrolyte containing a sodium.metal halogen salt including at least two kinds of halogens.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: January 24, 2017
    Assignees: SK Innovation Co., Ltd., Ceramatec, Inc.
    Inventors: Je Hyun Chae, Won Sang Koh, Seung Ok Lee, Dai In Park, Jeong Soo Kim, Sai Bhavaraju, Mathew Richard Robins, Alexis L. Eccleston, Ashok V. Joshi
  • Patent number: 9537179
    Abstract: An intermediate temperature molten sodium-metal halide rechargeable battery utilizes a molten eutectic mixture of sodium haloaluminate salts having a relatively low melting point that enables the battery to operate at substantially lower temperature compared to the traditional ZEBRA battery system and utilize a highly conductive NaSICON solid electrolyte membrane. The positive electrode comprises a mixture of NaX and MX, where X is a halogen selected from Cl, Br and I and M is a metal selected Ni, Fe, and Zn. The positive electrode is disposed in a mixed molten salt positive electrolyte comprising at least two salts that can be represented by the formula NaAlX?4-?X??, where 0<?<4, wherein X? and X? are different halogens selected from Cl, Br and I. The positive electrode may include additional NaX added in a molar ratio ranging from 1:1 to 3:1 of NaX:NaAlX?4-?X??.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: January 3, 2017
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, Ashok V. Joshi, Mathew Robins, Alexis Eccleston
  • Patent number: 9493882
    Abstract: Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: November 15, 2016
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, James Mosby, Patrick McGuire, Mukund Karanjikar, Daniel Taggart, Jacob Staley
  • Publication number: 20160308253
    Abstract: The present invention provides a sodium-aluminum secondary cell. The cell includes a sodium metal negative electrode, a positive electrode compartment that includes an aluminum positive electrode disposed in a positive electrolyte mixture of NaAl2X7 and NaAlX4, where X is a halogen atom or mixture of different halogen atoms selected from chlorine, bromine, and iodine, and a sodium ion conductive electrolyte membrane that separates the negative electrode from the positive electrolyte. In such cases, the electrolyte membrane can include any suitable material, including, without limitation, a NaSICON-type membrane. Generally, when the cell functions, both the sodium negative electrode and the positive electrolyte are molten and in contact with the electrolyte membrane. Additionally, the cell is functional at an operating temperature between about 100° C. and about 200° C.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 20, 2016
    Inventors: Mathew Robins, Sai Bhavaraju
  • Patent number: 9431682
    Abstract: The present invention provides an electrochemical cell having an negative electrode compartment and a positive electrode compartment. A solid alkali ion conductive electrolyte membrane is positioned between the negative electrode compartment and the positive electrode compartment. A catholyte solution in the positive electrode compartment includes a halide ion or pseudohalide ion concentration greater than 3M, which provides degradation protection to the alkali ion conductive electrolyte membrane. The halide ion or pseudohalide ion is selected from chloride, bromide, iodide, azide, thiocyanate, and cyanide. In some embodiments, the electrochemical cell is a molten sodium rechargeable cell which functions at an operating temperature between about 100° C. and about 150° C.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: August 30, 2016
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, Mathew Robins, Chett Boxley
  • Patent number: 9431681
    Abstract: A molten sodium secondary cell charges at a high temperature and discharges at a relatively lower temperature. The cell includes a sodium anode and a cathode. A sodium ion conductive solid membrane separates the cathode from the sodium anode and selectively transports sodium ions. A solar energy source includes a photovoltaic system to provide an electric charging potential to the sodium anode and the cathode and a solar thermal concentrator to provide heat to the cathode and catholyte composition to cause the molten sodium secondary cell to charge at a temperature in the range from about 300 to 800° C. The cell has a charge temperature and a charge voltage and a discharge temperature and a discharge voltage. The charge temperature is substantially higher than the discharge temperature, and the charge voltage is lower than the discharge voltage.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: August 30, 2016
    Assignee: CERAMATEC, INC.
    Inventors: Ashok V. Joshi, Sai Bhavaraju
  • Patent number: 9431656
    Abstract: A hybrid battery with a sodium anode is designed for use at a range of temperatures where the sodium is solid and where the sodium is molten. When the battery is at colder temperatures or when the vehicle is idle and needs to be “started,” the anode will be solid sodium metal. At the same time, the battery is designed such that, once the electric vehicle has been “started” and operated for a short period of time, heat is directed to the battery to melt the solid sodium anode into a molten form. In other words, the hybrid battery operates under temperature conditions where the sodium is solid and under temperature conditions where the sodium is molten.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: August 30, 2016
    Assignee: CERAMATEC, INC.
    Inventor: Sai Bhavaraju
  • Patent number: 9413036
    Abstract: A sodium-halogen secondary cell that includes a negative electrode compartment housing a negative, sodium-based electrode and a positive electrode compartment housing a current collector disposed in a liquid positive electrode solution. The liquid positive electrode solution includes a halogen and/or a halide. The cell includes a sodium ion conductive electrolyte membrane that separates the negative electrode from the liquid positive electrode solution. Although in some cases, the negative sodium-based electrode is molten during cell operation, in other cases, the negative electrode includes a sodium electrode or a sodium intercalation carbon electrode that is solid during operation.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: August 9, 2016
    Assignee: CERAMATEC, Inc.
    Inventors: Sai Bhavaraju, Mathew Robins, Alexis Eccelston
  • Publication number: 20160222524
    Abstract: Electrochemical systems and methods for producing hydrogen. Generally, the systems and methods involve providing an electrochemical cell that includes an anolyte compartment holding an anode in contact with an anolyte, wherein the anolyte includes an oxidizable substance having a higher standard oxidation potential than water. The cell further comprises a catholyte compartment holding a cathode in contact with a catholyte that includes a substance that reduces to form hydrogen. Additionally, the cell includes an alkali cation conductive membrane that separates the anolyte compartment from the catholyte compartment. As an electrical potential passes between the anode and cathode, the reducible substance reduces to form hydrogen and the oxidizable substance oxidizes to form an oxidized product. The pH within the catholyte compartment may be controlled and maintained to a value in the range of 6 to 8. Apparatus and methods to regenerate the oxidizable substance are disclosed.
    Type: Application
    Filed: March 4, 2016
    Publication date: August 4, 2016
    Inventors: Ashok V. Joshi, Sai Bhavaraju
  • Publication number: 20160097132
    Abstract: An apparatus for cleaning and/or disinfecting surfaces and objects includes a spray bottle that is refillable with an aqueous solution, the spray bottle including a nozzle and a container. The apparatus further includes a conduit in communication with the nozzle and an interior of the container, an actuator for pumping the aqueous solution from the interior of the container to outside the spray bottle through the nozzle, an ultraviolet light source in communication with the conduit configured to at least partially radiate the aqueous solution in the conduit, a power source in communication with the ultraviolet light source, and an actuator in electrical communication with the power source, the actuator configured to provide power to the ultraviolet light source upon actuation of the actuator.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 7, 2016
    Applicant: Microlin, LLC
    Inventors: Ashok V Joshi, Sai Bhavaraju
  • Patent number: 9297084
    Abstract: Electrochemical systems and methods for producing hydrogen. Generally, the systems and methods involve providing an electrochemical cell that includes an anolyte compartment holding an anode in contact with an anolyte, wherein the anolyte includes an oxidizable substance having a higher standard oxidation potential than water. The cell further comprises a catholyte compartment holding a cathode in contact with a catholyte that includes a substance that reduces to form hydrogen. Additionally, the cell includes an alkali cation conductive membrane that separates the anolyte compartment from the catholyte compartment. As an electrical potential passes between the anode and cathode, the reducible substance reduces to form hydrogen and the oxidizable substance oxidizes to form an oxidized product.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: March 29, 2016
    Assignee: CERAMATEC, INC.
    Inventors: Ashok V. Joshi, Sai Bhavaraju
  • Publication number: 20160087313
    Abstract: An intermediate temperature sodium-halogen secondary cell that includes a negative electrode compartment housing a negative, molten sodium-based electrode and a positive electrode compartment housing a current collector disposed in a highly conductive molten positive electrolyte. A sodium halide (NaX) positive electrode is disposed in a molten positive electrolyte comprising one or more AlX3 salts, wherein X may be the same or different halogen selected from Cl, Br, and I, wherein the ratio of NaX to AlX3 is greater than or equal to one. A sodium ion conductive solid electrolyte membrane separates the molten sodium negative electrode from the molten positive electrolyte. The secondary cell operates at a temperature in the range from about 80° C. to 210° C.
    Type: Application
    Filed: December 1, 2015
    Publication date: March 24, 2016
    Inventors: Sai Bhavaraju, Mathew Robins, Alexis Eccleston
  • Publication number: 20160051737
    Abstract: A wound therapy device is disclosed. The wound therapy device may include a housing for covering at least a portion of a wound and for sealing to a body surface of a patient. The housing may also include a liquid collector for retaining liquid therein and a vacuum connection for coupling to a vacuum source. The vacuum connection may be in gaseous communication with the liquid collector. The vacuum connection may be separated from the liquid collector by a liquid barrier.
    Type: Application
    Filed: October 22, 2015
    Publication date: February 25, 2016
    Inventors: Ashok V. Joshi, John Howard Gordon, Sai Bhavaraju, Troy C. Dayton, Jeremy Heiser
  • Publication number: 20160049658
    Abstract: Provided is a sodium secondary battery including: an anode containing sodium; a cathode containing sulfur; a cathode electrolyte solution being in contact with the cathode and capable of conducting sodium ions into and from a solid electrolyte membrane; and a solid electrolyte separating the anode and the cathode electrolyte solution and having sodium ion conductivity. The sodium secondary battery of the present invention overcomes the problems of thermal management and heat sealing due to a high operating temperature, possessed by the existing sodium-sulfur battery or sodium-nickel chloride battery (so called, a ZEBRA battery), and may achieve high a charge and discharge mechanism characteristic.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 18, 2016
    Inventors: JeHyun Chae, JeongSoo Kim, JongSeon Kim, Sai Bhavaraju
  • Publication number: 20160032207
    Abstract: A method for removing nitrogen from natural gas includes contacting substantially dry natural gas that contains unwanted nitrogen with lithium metal. The nitrogen reacts with lithium to form lithium nitride, which is recovered for further processing, and pipeline quality natural gas. The natural gas may optionally contain other chemical species that may be reduced by lithium, such as carbon dioxide, hydrogen sulfide, and small amounts of water. These lithium reducible species may be removed from the natural gas concurrently with the removal of nitrogen. The lithium nitride is subjected to an electrochemical process to regenerate lithium metal. In an alternative embodiment, lithium nitride is reacted with sulfur to form lithium sulfide and nitrogen. The lithium sulfide is subjected to an electrochemical process to regenerate lithium metal and sulfur. The electrochemical processes are advantageously performed in an electrolytic cell containing a lithium ion selective membrane separator.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 4, 2016
    Inventors: Ashok V. Joshi, Sai Bhavaraju
  • Patent number: 9222148
    Abstract: A method for recovering and extracting lithium from a feed liquid that may have a mixture of lithium and non-lithium salts present in the feed liquid. Salts of varying solubility are precipitated out of the feed liquid using water evaporation or other techniques. Pure lithium hydroxide is obtained using electrolysis or electro-dialysis processes in combination with a lithium ion selective inorganic membrane such as LiSICON. The negative effect of sodium and potassium on the lithium ion selective inorganic membrane is reduced by reversing the polarity of the current placed across the membrane.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: December 29, 2015
    Assignee: CERAMATEC, INC.
    Inventors: John Howard Gordon, Sai Bhavaraju
  • Patent number: 9206515
    Abstract: A method that produces coupled radical products. The method involves obtaining a sodium salt of a sulfonic acid (R—SO3—Na). The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the sulfonic acid desulfoxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: December 8, 2015
    Assignee: CERAMATEC, INC.
    Inventors: Sai Bhavaraju, Justin Pendleton
  • Patent number: 9168330
    Abstract: A wound therapy device is disclosed. The wound therapy device may include a housing for covering at least a portion of a wound and for sealing to a body surface of a patient. The housing may also include a liquid collector for retaining liquid therein and a vacuum connection for coupling to a vacuum source. The vacuum connection may be in gaseous communication with the liquid collector. The vacuum connection may be separated from the liquid collector by a liquid barrier.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: October 27, 2015
    Assignee: Kalypto Medical, Inc.
    Inventors: Ashok V. Joshi, John Howard Gordon, Sai Bhavaraju, Troy C. Dayton, Jeremy Heiser