Patents by Inventor Sai-Kai Cheng

Sai-Kai Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11400594
    Abstract: A method and system for programming a path-following robot to perform an operation along a continuous path while accounting for process equipment characteristics. The method eliminates the use of manual teaching cycles. In one example, a dispensing robot is programmed to apply a consistent bead of material, such as adhesive or sealant, along the continuous path. A computer-generated definition of the path, along with a model of dispensing equipment characteristics, are provided to an optimization routine. The optimization routine iteratively calculates robot tool center point path and velocity, and material flow, until an optimum solution is found. The optimized robot motion and dispensing equipment commands are then provided to an augmented reality (AR) system which allows a user to visualize and adjust the operation while viewing an AR simulation of dispensing system actions and a simulated material bead. Other examples include robotic welding or cutting along a continuous path.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: August 2, 2022
    Assignee: FANUC AMERICA CORPORATION
    Inventors: Yi Sun, Sai-Kai Cheng, Jason Tsai
  • Patent number: 11373372
    Abstract: An augmented reality (AR) system for diagnosis, troubleshooting and repair of industrial robots. The disclosed diagnosis guide system communicates with a controller of an industrial robot and collects data from the robot controller, including a trouble code identifying a problem with the robot. The system then identifies an appropriate diagnosis decision tree based on the collected data, and provides an interactive step-by-step troubleshooting guide to a user on an AR-capable mobile device, including augmented reality for depicting actions to be taken during testing and component replacement. The system includes data collector, tree generator and guide generator modules, and builds the decision tree and the diagnosis guide using a stored library of diagnosis trees, decisions and diagnosis steps, along with the associated AR data.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: June 28, 2022
    Assignee: FANUC AMERICA CORPORATION
    Inventors: Leo Keselman, Yi Sun, Sai-Kai Cheng, Jason Tsai
  • Patent number: 11112776
    Abstract: Methods and systems include ways to synchronize a press machine and tending robots, including a pick robot and a drop robot, where the press machine includes an operating area for pressing a blank into a part. The pick robot and the part are moved out of the operating area while the drop robot carrying the blank is moved into the operating area. At least a portion of the pick robot and/or the part resides within the operating area at the same time at least a portion of the drop robot and/or the blank resides within the operating area. The pick robot is in communication with the drop robot and the movement of the pick robot is synchronized with the movement of the drop robot to prevent the pick robot or part from colliding with the drop robot or the blank.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: September 7, 2021
    Assignee: FANUC AMERICA CORPORATION
    Inventors: Leo Keselman, Matthew DeNio, Eric Lee, Ho Cheung Wong, Peter Swanson, Sai-Kai Cheng
  • Patent number: 10773383
    Abstract: A method and a system stream robot tool center point position to external processors at high frequency. The method includes the steps of: reading robot joint encoder data using an Interrupt Service Routine in the robot controller; calculating tool center point position based on the encoder data; and sending the calculated position data to a network socket in a high priority task. The method achieves tool center point and/or joint position communication at fast and consistent time intervals, as compared to much longer times for prior art methods. A downstream device, such as a processor or controller for another machine, reads the communicated tool center point and/or joint position data and uses it to control the operations of its own device. High speed motion command streaming from outside processors can be used in a similar way to control the robot.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: September 15, 2020
    Assignee: FANUC AMERICA CORPORATION
    Inventors: Yi Sun, Jason Tsai, Sai-Kai Cheng, James F. Huber
  • Patent number: 10639791
    Abstract: Methods and systems for touch-sensing to provide an updated user frame are provided. These include the provision of a user frame and the touch-sensing of a workpiece, where the touch-sensing includes performing a touch-sensing schedule. The touch-sensing schedule includes one of a laser touch-sensing event and a wire touch-sensing event, where one of the laser touch-sensing event and the wire touch-sensing event is switched to the other of the laser touch-sensing event and the wire touch-sensing event while performing the touch-sensing schedule. An offset of the workpiece relative to the user frame is determined based on the touch-sensing of the workpiece and the offset is applied to the user frame to provide the updated user frame. The unique dynamic user frame feature enables same touch sensing program to be cloned and applied on multiple robot controllers.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: May 5, 2020
    Assignee: FANUC CORPORATION
    Inventors: Tien L. Chang, Terry Tupper, Ho Cheung Wong, Sai-Kai Cheng, Jason Tsai
  • Publication number: 20200078945
    Abstract: A method and system for programming a path-following robot to perform an operation along a continuous path while accounting for process equipment characteristics. The method eliminates the use of manual teaching cycles. In one example, a dispensing robot is programmed to apply a consistent bead of material, such as adhesive or sealant, along the continuous path. A CAD-generated definition of the path, along with a model of dispensing equipment characteristics, are provided to an optimization routine. The optimization routine iteratively calculates robot tool center point path and velocity, and material flow, until an optimum solution is found. The optimized robot motion and dispensing equipment commands are then provided to an augmented reality (AR) system which allows a user to visualize and adjust the operation while viewing an AR simulation of dispensing system actions and a simulated material bead. Other examples include robotic welding or cutting along a continuous path.
    Type: Application
    Filed: September 10, 2019
    Publication date: March 12, 2020
    Inventors: Yi Sun, Sai-Kai Cheng, Jason Tsai
  • Publication number: 20200078937
    Abstract: A method for monitoring an industrial robot. The method includes configuring the robot to perform a certain task during an integration process and storing integration data in the robot identifying the configuration of the robot for performing the task. The method also includes installing the robot in a manufacturing facility, and uploading the stored integration data to the Cloud when the robot is installed in the manufacturing facility. The method further includes capturing production data generated by the robot during operation of the robot in the manufacturing facility, uploading the production data to the Cloud, and comparing the production data to the integration data.
    Type: Application
    Filed: September 9, 2019
    Publication date: March 12, 2020
    Inventors: Yi Sun, Jason Tsai, Sai-Kai Cheng, Don Kijek, Bradley Q. Niederquell
  • Publication number: 20190392644
    Abstract: An augmented reality (AR) system for diagnosis, troubleshooting and repair of industrial robots. The disclosed diagnosis guide system communicates with a controller of an industrial robot and collects data from the robot controller, including a trouble code identifying a problem with the robot. The system then identifies an appropriate diagnosis decision tree based on the collected data, and provides an interactive step-by-step troubleshooting guide to a user on an AR-capable mobile device, including augmented reality for depicting actions to be taken during testing and component replacement. The system includes data collector, tree generator and guide generator modules, and builds the decision tree and the diagnosis guide using a stored library of diagnosis trees, decisions and diagnosis steps, along with the associated AR data.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 26, 2019
    Inventors: Leo Keselman, Yi Sun, Sai-Kai Cheng, Jason Tsai
  • Patent number: 10414043
    Abstract: A method for controlling motion of a robot relative to a conveyor flow direction of a moving conveyor includes the steps of: establishing a tracking frame for coordinating a position and movement of the robot relative to an object support surface of the conveyor; setting an upstream boundary perpendicular or skewed to a conveyor flow direction of the conveyor; setting a downstream boundary perpendicular or skewed to the conveyor flow direction; optionally setting a circular boundary partially overlapping the upstream boundary and the downstream boundary, wherein the upstream boundary, the downstream boundary and the circular boundary are positioned to define a picking area relative to the support surface; and operating the robot to pick objects from the picking area.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: September 17, 2019
    Assignee: FANUC AMERICA CORPORATION
    Inventors: Min Ren Jean, Ganesh Kalbavi, Sai-Kai Cheng
  • Publication number: 20190227532
    Abstract: Methods and systems include ways to synchronize a press machine and tending robots, including a pick robot and a drop robot, where the press machine includes an operating area for pressing a blank into a part. The pick robot and the part are moved out of the operating area while the drop robot carrying the blank is moved into the operating area. At least a portion of the pick robot and/or the part resides within the operating area at the same time at least a portion of the drop robot and/or the blank resides within the operating area. The pick robot is in communication with the drop robot and the movement of the pick robot is synchronized with the movement of the drop robot to prevent the pick robot or part from colliding with the drop robot or the blank.
    Type: Application
    Filed: September 26, 2017
    Publication date: July 25, 2019
    Inventors: Leo Keselman, Matthew DeNio, Eric Lee, Ho Cheung Wong, Peter Swanson, Sai-Kai Cheng
  • Publication number: 20180333852
    Abstract: A method and a system stream robot tool center point position to external processors at high frequency. The method includes the steps of: reading robot joint encoder data using an Interrupt Service Routine in the robot controller; calculating tool center point position based on the encoder data; and sending the calculated position data to a network socket in a high priority task. The method achieves tool center point and/or joint position communication at fast and consistent time intervals, as compared to much longer times for prior art methods. A downstream device, such as a processor or controller for another machine, reads the communicated tool center point and/or joint position data and uses it to control the operations of its own device. High speed motion command streaming from outside processors can be used in a similar way to control the robot.
    Type: Application
    Filed: May 21, 2018
    Publication date: November 22, 2018
    Inventors: Yi Sun, Jason Tsai, Sai-Kai Cheng, James F. Huber
  • Publication number: 20180215034
    Abstract: A method for controlling motion of a robot relative to a conveyor flow direction of a moving conveyor includes the steps of: establishing a tracking frame for coordinating a position and movement of the robot relative to an object support surface of the conveyor; setting an upstream boundary perpendicular or skewed to a conveyor flow direction of the conveyor; setting a downstream boundary perpendicular or skewed to the conveyor flow direction; optionally setting a circular boundary partially overlapping the upstream boundary and the downstream boundary, wherein the upstream boundary, the downstream boundary and the circular boundary are positioned to define a picking area relative to the support surface; and operating the robot to pick objects from the picking area.
    Type: Application
    Filed: January 31, 2017
    Publication date: August 2, 2018
    Inventors: Min Ren Jean, Ganesh Kalbavi, Sai-Kai Cheng
  • Publication number: 20170348853
    Abstract: Methods and systems for touch-sensing to provide an updated user frame are provided. These include the provision of a user frame and the touch-sensing of a workpiece, where the touch-sensing includes performing a touch-sensing schedule. The touch-sensing schedule includes one of a laser touch-sensing event and a wire touch-sensing event, where one of the laser touch-sensing event and the wire touch-sensing event is switched to the other of the laser touch-sensing event and the wire touch-sensing event while performing the touch-sensing schedule. An offset of the workpiece relative to the user frame is determined based on the touch-sensing of the workpiece and the offset is applied to the user frame to provide the updated user frame. The unique dynamic user frame feature enables same touch sensing program to be cloned and applied on multiple robot controllers.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Inventors: Tien L. Chang, Terry Tupper, Ho Cheung Wong, Sai-Kai Cheng, Jason Tsai
  • Patent number: 9415512
    Abstract: A system and method for enhancing a visualization of coordinate points within a robot's working envelope is disclosed. Part data associated with a position of a part, which may include part offset from a known position, is read using a teach pendant program. The part data is automatically stored within a hidden program instruction of the teach pendant program. The part data may be stored within the part program in a motion instruction associated with a motion line of the teach pendant program.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: August 16, 2016
    Assignee: Fanuc America Corporation
    Inventors: Sai-Kai Cheng, Gordon Geheb, Nivedhitha Giri, Randy A. Graca, David J. O'Toole
  • Patent number: 9327401
    Abstract: A method for controlling a redundant robot arm includes the steps of selecting an application for performing a robotic process on a workpiece with the arm and defining at least one constraint on motion of the arm. Then an instruction set is generated based upon the selected application representing a path for a robot tool attached to the arm by operating the arm in one of a teaching mode and a programmed mode to perform the robotic process on the workpiece and movement of the arm is controlled during the robotic process. A constraint algorithm is generated to maintain a predetermined point on the arm to at least one of be on, be near and avoid a specified constraint in a robot envelope during movement of the arm, and a singularity algorithm is generated to avoid a singularity encountered during the movement of the arm.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: May 3, 2016
    Assignee: Fanuc America Corporation
    Inventors: Di Xiao, Sai-Kai Cheng, Randy A. Graca, Matthew R. Sikowski, Jason Tsai
  • Publication number: 20160059414
    Abstract: A system and method for enhancing a visualization of coordinate points within a robot's working envelope is disclosed. Part data associated with a position of a part, which may include part offset from a known position, is read using a teach pendant program. The part data is automatically stored within a hidden program instruction of the teach pendant program. The part data may be stored within the part program in a motion instruction associated with a motion line of the teach pendant program.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 3, 2016
    Inventors: Sai-Kai Cheng, Gordon Geheb, Nivedhitha Giri, Randy A. Graca, David J. O'Toole
  • Patent number: 9227322
    Abstract: Painting robots processing a part moving on a conveyor are synchronized by creating for each of the robots a master sequence of computer program instructions for a collision-free movement of robots along associated master sequence paths relative to the moving part, each of the master sequence paths including positions of the associated robot and the conveyor at pre-defined synchronization points, and running each of the master sequences on a controller connected to the associated robot to move the associated robot and comparing a current path of the associated robot and the conveyor against the master sequence path. The method further includes operating the controllers to adjust the current paths based on the comparison between the master sequence path and the current path, and operating the controllers to request a conveyor motion hold as necessary to facilitate synchronization between movement of the robots and the conveyor.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: January 5, 2016
    Assignee: Fanuc Robotics America Corporation
    Inventors: Randy A. Graca, Di Xiao, Sai-Kai Cheng
  • Patent number: 9144904
    Abstract: A system and method for controlling avoiding collisions and deadlocks in a workcell containing multiple robots automatically determines the potential deadlock conditions and identifies a way to avoid these conditions. Deadlock conditions are eliminated by determining the deadlock-free motion statements prior to execution of the motions that have potential deadlock conditions. This determination of deadlock-free motion statements can be done offline, outside normal execution, or it can be done during normal production execution. If there is sufficient CPU processing time available, the determination during normal production execution provides the most flexibility to respond to dynamic conditions such as changes in I/O timing or the timing of external events or sequences. For minimal CPU impact the determination is done offline where many permutations of programming sequences can be analyzed and an optimized sequence of execution may be found.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: September 29, 2015
    Assignee: Fanuc Robotics America Corporation
    Inventors: H. Dean McGee, Tien L. Chang, Peter Swanson, Jianming Tao, Di Xiao, Ho Cheung Wong, Sai-Kai Cheng, Jason Tsai
  • Publication number: 20140156068
    Abstract: Painting robots processing a part moving on a conveyor are synchronized by creating for each of the robots a master sequence of computer program instructions for a collision-free movement of robots along associated master sequence paths relative to the moving part, each of the master sequence paths including positions of the associated robot and the conveyor at pre-defined synchronization points, and running each of the master sequences on a controller connected to the associated robot to move the associated robot and comparing a current path of the associated robot and the conveyor against the master sequence path. The method further includes operating the controllers to adjust the current paths based on the comparison between the master sequence path and the current path, and operating the controllers to request a conveyor motion hold as necessary to facilitate synchronization between movement of the robots and the conveyor.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: FANUC ROBOTICS AMERICA CORPORATION
    Inventors: Randy A. Graca, Di Xiao, Sai-Kai Cheng
  • Publication number: 20140074289
    Abstract: A method for controlling a redundant robot arm includes the steps of selecting an application for performing a robotic process on a workpiece with the arm and defining at least one constraint on motion of the arm. Then an instruction set is generated based upon the selected application representing a path for a robot tool attached to the arm by operating the arm in one of a teaching mode and a programmed mode to perform the robotic process on the workpiece and movement of the arm is controlled during the robotic process. A constraint algorithm is generated to maintain a predetermined point on the arm to at least one of be on, be near and avoid a specified constraint in a robot envelope during movement of the arm, and a singularity algorithm is generated to avoid a singularity encountered during the movement of the arm.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 13, 2014
    Inventors: Di Xiao, Sai-Kai Cheng, Randy A. Graca, Matthew R. Sikowski, Jason Tsai