Patents by Inventor Saibal Roy

Saibal Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10971986
    Abstract: A vibrational energy harvesting device is disclosed, which comprises first and second assemblies mounted on a base at a distance one from the other. The first assembly comprises vibrational means adapted to stretch under a straining force, whereby the device exhibits monostable quartic nonlinearity. The first and second assemblies comprise respective magnetised means in opposite polarity to one another, so that the second assembly exerts a repulsive magnetic force upon the vibrational means, whereby the device exhibits bistability. Both the monostable quartic and bistable nonlinearities can be independently controlled. A method of harvesting energy with the vibrational energy harvesting device is also disclosed.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: April 6, 2021
    Assignee: UNIVERSITY COLLEGE CORK—NATIONAL UNIVERSITY OF IRELAND, CORK
    Inventors: Saibal Roy, Pranay Podder, Dhiman Mallick, Andreas Amann
  • Patent number: 8703271
    Abstract: A thermal interface material (1) comprises a bulk polymer (2) within which is embedded sub-micron (c. 200 to 220 nm) composite material wires (3) having Ag and carbon nanotubes (“CNTs”) 4. The CNTs are embedded in the axial direction and have diameters in the range of 9.5 to 10 nm and have a length of about 0.7 ?m. In general the pore diameter can be in the range of 40 to 1200 nm. The material (1) has particularly good thermal conductivity because the wires (3) give excellent directionality to the nanotubes (4)—providing very low resistance heat transfer paths. The TIM is best suited for use between semiconductor devices (e.g. power semiconductor chip) and any type of thermal management systems for efficient removal of heat from the device.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: April 22, 2014
    Assignee: University College Cork—National University of Ireland
    Inventors: Kafil M. Razeeb, Saibal Roy, James Francis Rohan, Lorraine Christine Nagle
  • Patent number: 8029922
    Abstract: Methods and associated structures of forming microelectronic devices are described. Those methods may include forming a magnetic material on a substrate, wherein the magnetic material comprises rhenium, cobalt, iron and phosphorus, and annealing the magnetic material at a temperature below about 330 degrees Celsius, wherein the coercivity of the annealed magnetic material is below about 1 Oersted.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: October 4, 2011
    Assignee: Intel Corporation
    Inventors: Paul McCloskey, Donald S. Gardner, Brice Jamieson, Saibal Roy, Terence O'Donnell
  • Publication number: 20100196659
    Abstract: A thermal interface material (1) comprises a bulk polymer (2) within which is embedded sub-micron (c. 200 to 220 nm) composite material wires (3) having Ag and carbon nanotubes (“CNTs”) 4. The CNTs are embedded in the axial direction and have diameters in the range of 9.5 to 10 nm and have a length of about 0.7 ?m. In general the pore diameter can be in the range of 40 to 1200 nm. The material (1) has particularly good thermal conductivity because the wires (3) give excellent directionality to the nanotubes (4)—providing very low resistance heat transfer paths. The TIM is best suited for use between semiconductor devices (e.g. power semiconductor chip) and any type of thermal management systems for efficient removal of heat from the device.
    Type: Application
    Filed: April 23, 2008
    Publication date: August 5, 2010
    Inventors: Kafil M. Razeeb, Saibal Roy, James Francis Rohan, Lorraine Christine Nagle
  • Publication number: 20090169874
    Abstract: Methods and associated structures of forming microelectronic devices are described. Those methods may include forming a magnetic material on a substrate, wherein the magnetic material comprises rhenium, cobalt, iron and phosphorus, and annealing the magnetic material at a temperature below about 330 degrees Celsius, wherein the coercivity of the annealed magnetic material is below about 1 Oersted.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: Paul McCloskey, Donald S. Gardner, Brice Jamieson, Saibal Roy, Terence O'Donnell