Patents by Inventor Saif Khalil

Saif Khalil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170043164
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 16, 2017
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Patent number: 9566056
    Abstract: A suture anchor is described. The suture anchor includes an elongate anchor body having a proximal end and a distal end, at least one suture secured within the anchor body, and at least one piercing structure secured within the body extending proximally out of the proximal end of the body, wherein the at least one piercing structure is engaged with the at least one suture. A method of attaching soft tissue to bone in a subject is also described. The method includes the steps of securing an anchor device into a bore formed in the bone, the anchor device comprising an anchor body and at least one pre-loaded piercing structure with at least one suture attached to both the anchor body and the piercing structure, piercing a soft tissue by forcing the at least one piercing structure through the soft tissue, such that at least a portion of the at least one suture passes through the soft tissue, and tying the at least one suture against the soft tissue to secure the soft tissue to the bone.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: February 14, 2017
    Assignee: Aevumed, Inc.
    Inventors: Miles Ole Curtis, Saif Khalil
  • Publication number: 20170036026
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
    Type: Application
    Filed: October 21, 2016
    Publication date: February 9, 2017
    Inventors: Miles Curtis, Kyle Van Leer, Andrew Cameron, Saif Khalil
  • Patent number: 9550062
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 24, 2017
    Assignee: GLOBUS MEDICAL, INC
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20170014628
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: September 30, 2016
    Publication date: January 19, 2017
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 9526899
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body includes a timing generator and high frequency generator. The timing generator generates timing signals that represent stimulation signals for multiple channels. The high frequency generator determines whether to modulate the timing signals and modulates them at a burst frequency according to stored burst parameters if the decision is yes. As such, the IPG provides the ability to generate both the low frequency and high frequency stimulation signals in different channels according to user programming.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: December 27, 2016
    Assignee: Globus Medical, Inc.
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Patent number: 9517347
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body includes an electrode driver for each electrode, which adjusts the amplitude of the timing signals and output an output current corresponding to the adjusted signals for transmission to the associated electrode so as to enable independent amplitude control of the stimulation signals for each stimulation pattern channel.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: December 13, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Patent number: 9517343
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: December 13, 2016
    Assignee: GLOBUS MEDICAL. INC.
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Patent number: 9511232
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body includes a timing generator and high frequency generator. The timing generator generates timing signals that represent stimulation signals for multiple channels. The high frequency generator determines whether to modulate the timing signals and modulates them at a burst frequency according to stored burst parameters if the decision is yes. The high frequency generator can also independently control the pulse frequency of each channel according to the stored parameters. As such, the IPG provides the ability to generate both the low frequency and high frequency stimulation signals at different frequencies in different channels according to user programming in order to provide maximum flexibility in treatment.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: December 6, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Patent number: 9511227
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: December 6, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil
  • Publication number: 20160339246
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsources, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: August 3, 2016
    Publication date: November 24, 2016
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 9492665
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 15, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20160271405
    Abstract: Systems, devices and methods for providing neuromodulation are provided. One such system can include an implantable pulse generator. The implantable pulse generator can include a circuit board having a microcontroller that generates signals that are input into an ASIC. The ASIC serves as pulse generator that allows electrical pulses to be outputted into leads. The implantable pulse generator is capable of receiving and/or generating signals either via a wireless communication (e.g., a wireless remote control), a touching force (e.g., pressure from a finger), a motion sensor or any combination of the above.
    Type: Application
    Filed: February 16, 2016
    Publication date: September 22, 2016
    Inventors: Raghavendra Angara, Miles Curtis, Christopher Biele, Saif Khalil, Jason Highsmith
  • Patent number: 9440076
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: September 13, 2016
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20160250471
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 1, 2016
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 9308369
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: April 12, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 9302108
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 5, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Patent number: 9278216
    Abstract: Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: March 8, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Saif Khalil, Raghavendra Angara, Miles Curtis, Christopher Biele, Daniel Fellmeth
  • Publication number: 20160046078
    Abstract: One aspect of the invention provides a method for multi-nozzle biopolymer deposition of heterogeneous materials to create or modify a composite biopolymer multi-part three-dimensional assembly having at least one biomimetic and at least one non-biomimetic feature. The method includes: (a) utilizing a CAD environment to design and/or modify a composite multi-part assembly, thereby producing a CAD design; (b) converting the CAD design into a three-dimensional heterogeneous material and multi-part assembly model in a format suitable for three-dimensional, multi-nozzle printing, wherein the design comprises at least one biomimetic feature and at least one non-biomimetic feature; and (c) printing the composite assembly by simultaneously depositing the heterogeneous materials using multiple, different, specialized nozzles, wherein the simultaneous depositing includes direct deposition of cells.
    Type: Application
    Filed: October 28, 2015
    Publication date: February 18, 2016
    Inventors: Wei Sun, Jae Hyun Nam, Andrew Leete Darling, Saif Khalil
  • Publication number: 20160015981
    Abstract: An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body includes a timing generator and high frequency generator. The timing generator generates timing signals that represent stimulation signals for multiple channels. The high frequency generator determines whether to modulate the timing signals and modulates them at a burst frequency according to stored burst parameters if the decision is yes. The high frequency generator can also independently control the pulse frequency of each channel according to the stored parameters. As such, the IPG provides the ability to generate both the low frequency and high frequency stimulation signals at different frequencies in different channels according to user programming in order to provide maximum flexibility in treatment.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 21, 2016
    Inventors: Christopher Biele, Raghavendra Angara, Saif Khalil