Patents by Inventor Sajal Kumar Mandal

Sajal Kumar Mandal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9832008
    Abstract: A method, algorithm, architecture, circuit and/or system that compensates for frequency difference in oversampled CDRs. The oversampled CDR uses a programmable divider whose division ratio is changed, for one or more cycles, from its usual division ratio, when accumulated phase movement in either direction exceeds a threshold. Accordingly, the elasticity buffer in oversampled CDRs can be made much smaller or entirely eliminated, resulting in less area, and reduced or eliminated dependence of max allowed burst size on ppm difference. The threshold can be kept programmable, and more than half unit interval, to provide robustness towards high frequency jitter.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: November 28, 2017
    Assignee: STMicroelectronics International N.V.
    Inventors: Abhishek Chowdhary, Vivek Uppal, Alok Kaushik, Sajal Kumar Mandal, Tapas Nandy, Sanjeev Chopra
  • Patent number: 9705665
    Abstract: A method, algorithm, architecture, circuit and/or system that compensates for frequency difference in oversampled CDRs. The oversampled CDR uses a programmable divider whose division ratio is changed, for one or more cycles, from its usual division ratio, when accumulated phase movement in either direction exceeds a threshold. Accordingly, the elasticity buffer in oversampled CDRs can be made much smaller or entirely eliminated, resulting in less area, and reduced or eliminated dependence of max allowed burst size on ppm difference. The threshold can be kept programmable, and more than half unit interval, to provide robustness towards high frequency jitter.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: July 11, 2017
    Assignee: STMicroelectronics International N.V.
    Inventors: Abhishek Chowdhary, Vivek Uppal, Alok Kaushik, Sajal Kumar Mandal, Tapas Nandy, Sanjeev Chopra
  • Patent number: 9524798
    Abstract: A circuit includes: a first circuit stage configured to sample a differential input signal at a first logic state of a sampling clock and regenerate the sampled differential input signal at a second logic state of the sampling clock to output a first regenerated differential signal; a second circuit stage configured to amplify the first regenerated differential signal at the second logic state of the sampling clock to output an amplified differential signal; and a third circuit stage configured to regenerate the amplified differential signal at the first logic state of the sampling clock to output a second regenerated differential signal.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: December 20, 2016
    Assignee: STMICROELECTRONICS INTERNATIONAL N.V.
    Inventor: Sajal Kumar Mandal
  • Patent number: 9490796
    Abstract: A low-power wideband Power-on-Reset (PoR) and supply brown out detection circuit is proposed, wherein a technique for accurately controlling the PoR trip points and hysteresis voltage is presented. The PoR circuit includes a CMOS circuit with asymmetric rise and fall delays for monitoring wideband supply voltage transients including supply brown out. Being a non-bandgap and non-comparator based circuit, it consumes a very small power and Si area.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: November 8, 2016
    Assignee: STMicroelectronics International N.V.
    Inventors: Pralay Mandal, Sajal Kumar Mandal
  • Patent number: 9356770
    Abstract: A method, algorithm, architecture, circuit and/or system that compensates for frequency difference in oversampled CDRs. The oversampled CDR uses a programmable divider whose division ratio is changed, for one or more cycles, from its usual division ratio, when accumulated phase movement in either direction exceeds a threshold. Accordingly, the elasticity buffer in oversampled CDRs can be made much smaller or entirely eliminated, resulting in less area, and reduced or eliminated dependence of max allowed burst size on ppm difference. The threshold can be kept programmable, and more than half unit interval, to provide robustness towards high frequency jitter.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: May 31, 2016
    Assignee: STMicroelectronics International N.V.
    Inventors: Abhishek Chowdhary, Vivek Uppal, Alok Kaushik, Sajal Kumar Mandal, Tapas Nandy, Sanjeev Chopra
  • Publication number: 20160149695
    Abstract: A method, algorithm, architecture, circuit and/or system that compensates for frequency difference in oversampled CDRs. The oversampled CDR uses a programmable divider whose division ratio is changed, for one or more cycles, from its usual division ratio, when accumulated phase movement in either direction exceeds a threshold. Accordingly, the elasticity buffer in oversampled CDRs can be made much smaller or entirely eliminated, resulting in less area, and reduced or eliminated dependence of max allowed burst size on ppm difference. The threshold can be kept programmable, and more than half unit interval, to provide robustness towards high frequency jitter.
    Type: Application
    Filed: January 28, 2016
    Publication date: May 26, 2016
    Inventors: Abhishek CHOWDHARY, Vivek UPPAL, Alok KAUSHIK, Sajal Kumar MANDAL, Tapas NANDY, Sanjeev CHOPRA
  • Publication number: 20160119117
    Abstract: A method, algorithm, architecture, circuit and/or system that compensates for frequency difference in oversampled CDRs. The oversampled CDR uses a programmable divider whose division ratio is changed, for one or more cycles, from its usual division ratio, when accumulated phase movement in either direction exceeds a threshold. Accordingly, the elasticity buffer in oversampled CDRs can be made much smaller or entirely eliminated, resulting in less area, and reduced or eliminated dependence of max allowed burst size on ppm difference. The threshold can be kept programmable, and more than half unit interval, to provide robustness towards high frequency jitter.
    Type: Application
    Filed: December 31, 2015
    Publication date: April 28, 2016
    Inventors: Abhishek CHOWDHARY, Vivek UPPAL, Alok KAUSHIK, Sajal Kumar MANDAL, Tapas NANDY, Sanjeev CHOPRA
  • Patent number: 9256233
    Abstract: In an embodiment, an electronic includes a feedback-coupled circuit stage and a compensation circuit stage. The feedback-coupled stage is configured to drive a load, and the compensation stage is coupled to the feedback-coupled stage such that a combination of the compensation and feedback-coupled stages has a frequency response including a first root and an opposite second root that depend on the load. For example, an embodiment of such an electronic circuit may be a low-dropout (LDO) voltage regulator that lacks a large output capacitance for forming a dominant pole to stabilize the regulator. The regulator includes a feedback-coupled stage that generates and regulates an output voltage, and includes a compensation stage that is designed such that the frequency response of the regulator includes a zero that tracks a non-dominant output pole of the regulator so that the output pole does not adversely affect the stability of the regulator.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: February 9, 2016
    Assignee: STMicroelectronics International N.V.
    Inventors: Pralay Mandal, Sajal Kumar Mandal
  • Publication number: 20150280898
    Abstract: A method, algorithm, architecture, circuit and/or system that compensates for frequency difference in oversampled CDRs. The oversampled CDR uses a programmable divider whose division ratio is changed, for one or more cycles, from its usual division ratio, when accumulated phase movement in either direction exceeds a threshold. Accordingly, the elasticity buffer in oversampled CDRs can be made much smaller or entirely eliminated, resulting in less area, and reduced or eliminated dependence of max allowed burst size on ppm difference. The threshold can be kept programmable, and more than half unit interval, to provide robustness towards high frequency jitter.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Applicant: STMicroelectronics International N.V.
    Inventors: Abhishek Chowdhary, Vivek Uppal, Alok Kaushik, Sajal Kumar Mandal, Tapas Nandy, Sanjeev Chopra
  • Publication number: 20150236689
    Abstract: A low-power wideband Power-on-Reset (PoR) and supply brown out detection circuit is proposed, wherein a technique for accurately controlling the PoR trip points and hysteresis voltage is presented. The PoR circuit includes a CMOS circuit with asymmetric rise and fall delays for monitoring wideband supply voltage transients including supply brown out. Being a non-bandgap and non-comparator based circuit, it consumes a very small power and Si area.
    Type: Application
    Filed: March 31, 2015
    Publication date: August 20, 2015
    Inventors: Pralay Mandal, Sajal Kumar Mandal
  • Patent number: 9018989
    Abstract: A low-power wideband Power-on-Reset (PoR) and supply brown out detection circuit is proposed, wherein a technique for accurately controlling the PoR trip points and hysteresis voltage is presented. The PoR circuit includes a CMOS circuit with asymmetric rise and fall delays for monitoring wideband supply voltage transients including supply brown out. Being a non-bandgap and non-comparator based circuit, it consumes a very small power and Si area.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: April 28, 2015
    Assignee: STMicroelectronics International N.V.
    Inventors: Pralay Mandal, Sajal Kumar Mandal
  • Publication number: 20150043681
    Abstract: A circuit includes: a first circuit stage configured to sample a differential input signal at a first logic state of a sampling clock and regenerate the sampled differential input signal at a second logic state of the sampling clock to output a first regenerated differential signal; a second circuit stage configured to amplify the first regenerated differential signal at the second logic state of the sampling clock to output an amplified differential signal; and a third circuit stage configured to regenerate the amplified differential signal at the first logic state of the sampling clock to output a second regenerated differential signal.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Applicant: STMICROELECTRONICS INTERNATIONAL N.V.
    Inventor: Sajal Kumar Mandal
  • Publication number: 20140368176
    Abstract: In an embodiment, an electronic includes a feedback-coupled circuit stage and a compensation circuit stage. The feedback-coupled stage is configured to drive a load, and the compensation stage is coupled to the feedback-coupled stage such that a combination of the compensation and feedback-coupled stages has a frequency response including a first root and an opposite second root that depend on the load. For example, an embodiment of such an electronic circuit may be a low-dropout (LDO) voltage regulator that lacks a large output capacitance for forming a dominant pole to stabilize the regulator. The regulator includes a feedback-coupled stage that generates and regulates an output voltage, and includes a compensation stage that is designed such that the frequency response of the regulator includes a zero that tracks a non-dominant output pole of the regulator so that the output pole does not adversely affect the stability of the regulator.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 18, 2014
    Inventors: Pralay MANDAL, Sajal Kumar MANDAL
  • Publication number: 20140111258
    Abstract: A low-power wideband Power-on-Reset (PoR) and supply brown out detection circuit is proposed, wherein a technique for accurately controlling the PoR trip points and hysteresis voltage is presented. The PoR circuit includes a CMOS circuit with asymmetric rise and fall delays for monitoring wideband supply voltage transients including supply brown out. Being a non-bandgap and non-comparator based circuit, it consumes a very small power and Si area.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 24, 2014
    Applicant: STMICROELECTRONICS INTERNATIONAL N.V.
    Inventors: Pralay Mandal, Sajal Kumar Mandal
  • Patent number: 8054055
    Abstract: A low dropout voltage regulator (LDO) includes a bias voltage generator, a differential error amplifier, an output driver, a controlled active load, a Double Ended Cascode Miller compensation block. The bias voltage generator produces a plurality of bias voltages. The differential error amplifier produces a differential output voltage based on the difference between a reference voltage and a function of the output voltage. The input terminal of the output driver is coupled to one output of the differential error amplifier. The substrate terminal of the output driver is capacitively coupled to the output node and resistively coupled to the input supply node. The controlled active load is coupled to the output of the output driver, and its control terminal is coupled to a function of the second output of the differential error amplifier.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: November 8, 2011
    Assignee: STMicroelectronics PVT. Ltd.
    Inventor: Sajal Kumar Mandal
  • Patent number: 7902801
    Abstract: The present invention provides a low dropout (LDO) regulator with a stability compensation circuit. A “zero frequency” tracking as well as “non-dominant parasitic poles' frequency reshaping” are performed to achieve a good phase margin for the LDO by means of the compensation circuit. In this compensation method neither a large load capacitor nor its equivalent series resistance is needed to stabilize a regulator. LDO regulators, in system on chip application, having load capacitors in the range of few nano-Farads to few hundreds of nano-Farads can be efficiently compensated with this compensation method. A dominant pole for the regulator is realized at an internal node and the second pole at an output node of the regulator is tracked with a variable capacitor generated zero over a range of load current to cancel the effect of each other. A third pole of the system is pushed out above the unity gain frequency of the open loop transfer function with the help of the frequency compensation circuit.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: March 8, 2011
    Assignee: ST-Ericsson SA
    Inventor: Sajal Kumar Mandal
  • Publication number: 20090289610
    Abstract: The present invention provides a low dropout (LDO) regulator with a stability compensation circuit. A “zero frequency” tracking as well as “non-dominant parasitic poles' frequency reshaping” are performed to achieve a good phase margin for the LDO by means of the compensation circuit. In this compensation method neither a large load capacitor nor its equivalent series resistance is needed to stabilize a regulator. LDO regulators, in system on chip application, having load capacitors in the range of few nano-Farads to few hundreds of nano-Farads can be efficiently compensated with this compensation method. A dominant pole for the regulator is realized at an internal node and the second pole at an output node of the regulator is tracked with a variable capacitor generated zero over a range of load current to cancel the effect of each other. A third pole of the system is pushed out above the unity gain frequency of the open loop transfer function with the help of the frequency compensation circuit.
    Type: Application
    Filed: August 4, 2009
    Publication date: November 26, 2009
    Applicant: ST-Ericsson SA
    Inventor: Sajal Kumar MANDAL
  • Patent number: 7589507
    Abstract: The present invention provides a low dropout (LDO) regulator with a stability compensation circuit. A “zero frequency” tracking as well as “non-dominant parasitic poles' frequency reshaping” are performed to achieve a good phase margin for the LDO by means of the compensation circuit. In this compensation method neither a large load capacitor nor its equivalent series resistance is needed to stabilize a regulator. LDO regulators, in system on chip application, having load capacitors in the range of few nano-Farads to few hundreds of nano-Farads can be efficiently compensated with this compensation method. A dominant pole for the regulator is realized at an internal node and the second pole at an output node of the regulator is tracked with a variable capacitor generated zero over a range of load current to cancel the effect of each other. A third pole of the system is pushed out above the unity gain frequency of the open loop transfer function with the help of the frequency compensation circuit.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: September 15, 2009
    Assignee: ST-Ericsson SA
    Inventor: Sajal Kumar Mandal
  • Publication number: 20090128104
    Abstract: A low dropout voltage regulator (LDO) includes a bias voltage generator, a differential error amplifier, an output driver, a controlled active load, a Double Ended Cascode Miller compensation block. The bias voltage generator produces a plurality of bias voltages. The differential error amplifier produces a differential output voltage based on the difference between a reference voltage and a function of the output voltage. The input terminal of the output driver is coupled to one output of the differential error amplifier. The substrate terminal of the output driver is capacitively coupled to the output node and resistively coupled to the input supply node. The controlled active load is coupled to the output of the output driver, and its control terminal is coupled to a function of the second output of the differential error amplifier.
    Type: Application
    Filed: December 31, 2008
    Publication date: May 21, 2009
    Applicant: STMICROELECTRONICS PVT. LTD.
    Inventor: Sajal Kumar MANDAL