Patents by Inventor Sajjad A. Khan
Sajjad A. Khan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250028158Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: ApplicationFiled: October 2, 2024Publication date: January 23, 2025Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Patent number: 12140741Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: GrantFiled: June 26, 2023Date of Patent: November 12, 2024Assignee: Apple Inc.Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Publication number: 20230333359Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective minor may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: ApplicationFiled: June 26, 2023Publication date: October 19, 2023Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Patent number: 11740446Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: GrantFiled: January 15, 2021Date of Patent: August 29, 2023Assignee: Apple Inc.Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Patent number: 11340521Abstract: In described examples, a first TIR or RTIR element is arranged to introduce at least red light to a first spatial light modulator for modulation thereof, and a second TIR or RTIR element is arranged to introduce at least green light to a second spatial light modulator for modulation thereof. At least one of the first and second TIR or RTIR elements is arranged to introduce blue light to at least one of the first and second spatial light modulators, respectively, for modulation thereof: time-sequentially apart from the first spatial light modulator's modulation of the introduced red light, to an extent the blue light is so introduced to the first spatial light modulator; and time-sequentially apart from the second spatial light modulator's modulation of the introduced green light, to an extent the blue light is so introduced to the second spatial light modulator.Type: GrantFiled: March 6, 2018Date of Patent: May 24, 2022Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: William M. Bommersbach, Gregory S. Pettitt, John M. Ferri, Sajjad Khan
-
Patent number: 11217567Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: GrantFiled: April 28, 2020Date of Patent: January 4, 2022Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Publication number: 20210356838Abstract: A method for directing light beams includes generating a light beam along a light path. A voltage differential is created by generating a voltage in a first and second linear electrode contacts arranged such that the first and second linear electrical contacts alternate with each other. The light path is altered by passing the light beam through a liquid crystal device coupled to the first and second linear electrical contacts.Type: ApplicationFiled: July 28, 2021Publication date: November 18, 2021Inventor: Sajjad A. Khan
-
Patent number: 11119381Abstract: A method for directing light beams includes generating a light beam along a light path. A voltage differential is created by generating a voltage in a first and second linear electrode contacts arranged such that the first and second linear electrical contacts alternate with each other. The light path is altered by passing the light beam through a liquid crystal device coupled to the first and second linear electrical contacts.Type: GrantFiled: December 21, 2017Date of Patent: September 14, 2021Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Sajjad A. Khan
-
Publication number: 20210132349Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: ApplicationFiled: January 15, 2021Publication date: May 6, 2021Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Patent number: 10928613Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: GrantFiled: January 30, 2020Date of Patent: February 23, 2021Assignee: Apple Inc.Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Publication number: 20200312824Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: ApplicationFiled: April 28, 2020Publication date: October 1, 2020Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Patent number: 10685940Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: GrantFiled: April 4, 2019Date of Patent: June 16, 2020Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Publication number: 20200166738Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: ApplicationFiled: January 30, 2020Publication date: May 28, 2020Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Patent number: 10591707Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: GrantFiled: December 18, 2018Date of Patent: March 17, 2020Assignee: Apple Inc.Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Publication number: 20190237444Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: ApplicationFiled: April 4, 2019Publication date: August 1, 2019Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland Van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Patent number: 10297581Abstract: Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.Type: GrantFiled: July 5, 2016Date of Patent: May 21, 2019Assignee: Apple Inc.Inventors: Jonathan S. Steckel, Jean-Jacques P. Drolet, Roland van Gelder, Kelly C. McGroddy, Ion Bita, James Michael Perkins, Andreas Bibl, Sajjad A. Khan, James E. Pedder, Elmar Gehlen
-
Publication number: 20190146198Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: ApplicationFiled: December 18, 2018Publication date: May 16, 2019Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Patent number: 10203489Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have a pixel array that produces light associated with images. The display system may also have a linear polarizer through which light from the pixel array passes and a quarter wave plate through which the light passes after passing through the quarter wave plate. The optical system may be a catadioptric optical system having one or more lens elements. The lens elements may include a plano-convex lens and a plano-concave lens. A partially reflective mirror may be formed on a convex surface of the plano-convex lens. A reflective polarizer may be formed on the planar surface of the plano-convex lens or the concave surface of the plano-concave lens. An additional quarter wave plate may be located between the reflective polarizer and the partially reflective mirror.Type: GrantFiled: February 16, 2017Date of Patent: February 12, 2019Assignee: Apple Inc.Inventors: Sajjad A. Khan, Nan Zhu, Graham B. Myhre, Brent J. Bollman, Tyler Anderson, Weibo Cheng, John N. Border
-
Patent number: 10044418Abstract: A communication system is provided for a vehicle having multiple antennas and multiple transmitting and/or receiving interfaces. At least one first antenna is arranged in the interior of the vehicle, and at least one second antenna is arranged on the outside of the vehicle. The first antenna is designed to wirelessly establish at least one part of a data connection between a first communication unit which is located in the interior of the vehicle and at least one first network base unit which is located outside of the vehicle via a first transmitting and/or receiving interface. The second antenna is designed to wirelessly establish at least one part of a data connection between a second communication unit which is located in the interior of the vehicle and the first and/or a second network base unit which is located outside of the vehicle via a second transmitting and/or receiving interface.Type: GrantFiled: May 27, 2016Date of Patent: August 7, 2018Assignee: Bayerische Motoren Werke AktiengesellschaftInventors: Stefan Fikar, Markus Kaindl, Sajjad Khan
-
Publication number: 20180196338Abstract: In described examples, a first TIR or RTIR element is arranged to introduce at least red light to a first spatial light modulator for modulation thereof, and a second TIR or RTIR element is arranged to introduce at least green light to a second spatial light modulator for modulation thereof. At least one of the first and second TIR or RTIR elements is arranged to introduce blue light to at least one of the first and second spatial light modulators, respectively, for modulation thereof: time-sequentially apart from the first spatial light modulator's modulation of the introduced red light, to an extent the blue light is so introduced to the first spatial light modulator; and time-sequentially apart from the second spatial light modulator's modulation of the introduced green light, to an extent the blue light is so introduced to the second spatial light modulator.Type: ApplicationFiled: March 6, 2018Publication date: July 12, 2018Inventors: William M. Bommersbach, Gregory S. Pettitt, John M. Ferri, Sajjad Khan