Patents by Inventor Salamat Ali

Salamat Ali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931378
    Abstract: Strontium oxide (SrO) nanoparticle and various concentrations of chitosan (CS)-doped SrO nanocomposite were synthesized via co-precipitation method. A variety of characterization techniques including were done for characterizing and qualifying the nanocomposite. X-ray powder diffraction affirmed cubic and tetragonal structure of SrO nanoparticle and CS-doped SrO nanocomposite with a decrease in crystallinity upon doping. Fourier transform infrared spectrum endorsed existing functional groups on CS/SrO surfaces while d-spacing was estimated using high resolution Transmission electron microscopes images. UV-Visible and Photoluminescence spectroscopy spectra showed an increase in band gap energies with an increase in doping concentration. Elemental composition of CS-doped SrO nanocomposite deposited with different doping concentrations was studied using Energy dispersive Spectroscopy.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: March 19, 2024
    Assignee: Alfaisal University
    Inventors: Souraya Goumri-Said, Mohammed Benali Kanoun, Salamat Ali, Junaid Haider, Ali Haider, Muhammad Ikram
  • Patent number: 11932552
    Abstract: Strontium oxide (SrO) nanoparticle and various concentrations of chitosan (CS)-doped SrO nanocomposite were synthesized via co-precipitation method. A variety of characterization techniques including were done for characterizing and qualifying the nanocomposite. X ray powder diffraction affirmed cubic and tetragonal structure of SrO nanoparticle and CS-doped SrO nanocomposite with a decrease in crystallinity upon doping. Fourier transform infrared spectrum endorsed existing functional groups on CS/SrO surfaces while d-spacing was estimated using high resolution Transmission electron microscopes images. UV-Visible and Photoluminescence spectroscopy spectra showed an increase in band gap energies with an increase in doping concentration. Elemental composition of CS-doped SrO nanocomposite deposited with different doping concentrations was studied using Energy dispersive Spectroscopy.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: March 19, 2024
    Assignee: Alfaisal University
    Inventors: Souraya Goumri-Said, Mohammed Benali Kanoun, Salamat Ali, Junaid Haider, Ali Haider, Muhammad Ikram
  • Publication number: 20230190788
    Abstract: CS-doped SrO nanocomposite were successfully synthesized through co-precipitation route for bactericidal activities. Effect of CS doping on morphological features, optical properties, elemental composition and phase constitution on CS-doped SrO nanocomposite was analyzed. XRD analysis confirmed tetragonal and cubic structures of SrO nanoparticles and CS-doped SrO nanocomposite. UV-vis spectroscopy was used to obtain 4.19 eV of SrO nanoparticles while emission spectra of doped SrO showed blueshift upon CS doping with multi-concentration. Interlayer d-spacing attained from HRTEM micrographs well matched with XRD d-spacing. Purity content of prepared nanostructures was measured with EDS analysis. Overall, 0.06:1 showed significant antibacterial activity against both Gram +ve and -ve bacterial isolates. Thus, CS-doped SrO nanocomposite can be used in modem medicine as an alternative antibacterial to overcome the development of resistance to antibiotics.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 22, 2023
    Applicant: Alfaisal University
    Inventors: Souraya Goumri-Said, MOHAMMED Benali Kanoun, Salamat Ali, Junaid Haider, Ali Haider, Muhammad Ikram
  • Publication number: 20230183087
    Abstract: Strontium oxide (SrO) nanoparticle and various concentrations of chitosan (CS)-doped SrO nanocomposite were synthesized via co-precipitation method. A variety of characterization techniques including were done for characterizing and qualifying the nanocomposite. X ray powder diffraction affirmed cubic and tetragonal structure of SrO nanoparticle and CS-doped SrO nanocomposite with a decrease in crystallinity upon doping. Fourier transform infrared spectrum endorsed existing functional groups on CS/SrO surfaces while d-spacing was estimated using high resolution Transmission electron rnicroscopes images. UV-Visible and PL Photoluminescence spectroscopy spectra showed an increase in band gap energies with an increase in doping concentration. Elemental composition of CS-doped SrO nanocomposite deposited with different doping concentrations was studied using Energy dispersive Spectroscopy.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 15, 2023
    Applicant: Alfaisal University
    Inventors: Souraya Goumri-Said, Mohammed Benali Kanoun, Salamat Ali, Junaid Haider, Ali Haider, Muhammad Ikram