Patents by Inventor Salih Yarga

Salih Yarga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180115053
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing. The peripheral conductive structures may form housing sidewalls. A slot may be machined into a metal housing that separates the housing sidewalls from a planar rear housing portion that forms a ground for an antenna. The slot may be filled with plastic filler. A parasitic antenna resonating element arm that supports an antenna resonance at high band frequencies may be embedded within the plastic filler. The parasitic antenna resonating element may be formed from a portion of the planar rear housing portion.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 26, 2018
    Inventors: Hongfei Hu, Benjamin hane Bustle, Enrique Ayala Vazquez, Nanbo Jin, Miguel Christophy, Erdinc Irci, Salih Yarga, Erica Tong, Anand Lakshmanan, Mattia Pascolini, Tyler Cater, Christopher T. Cheng
  • Publication number: 20180069308
    Abstract: A consumer electronic product includes a switchable inductor array coupled to the RF antenna, the switchable inductor array comprising inductive elements and a switch circuit coupled to the inductor array to select at least one of the inductive elements and couple the selected inductive element with the RF antenna. The product can further include an assembly having a mesh that is strengthened by a stiffener. A multi-layer adhesive have a conductive layer that can be used to shield the RF antenna and adhesive layers that can provide adhesion between the stiffener and the housing of the product. The assembly can be covered by a cowling that is made of metal to provide further shielding. To reduce potential coupling between the RF antenna and the cowling, the cowling can have a portion that is formed of plastic to distance its metal portion from the antenna.
    Type: Application
    Filed: March 16, 2017
    Publication date: March 8, 2018
    Inventors: Christopher J. DURNING, Hongfei HU, Erdinc IRCI, Salih YARGA, Christopher T. CHENG, Enrique AYALA VAZQUEZ, Nanbo JIN, Erica J. TONG, Mattia PASCOLINI, Denis J. LIN, Salome BAVETTA, Sherry LEE
  • Publication number: 20180069317
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Nanbo Jin, Matthew A. Mow, Liang Han, Ming-Ju Tsai, Erica J. Tong, Erdinc Irci, Salih Yarga, Mattia Pascolini, Benjamin Shane Bustle, Ruben Caballero
  • Patent number: 9876272
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing. The peripheral conductive structures may form housing sidewalls. A slot may be machined into a metal housing that separates the housing sidewalls from a planar rear housing portion that forms a ground for an antenna. The slot may be filled with plastic filler. A parasitic antenna resonating element arm that supports an antenna resonance at high band frequencies may be embedded within the plastic filler. The parasitic antenna resonating element may be formed from a portion of the planar rear housing portion.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: January 23, 2018
    Assignee: Apple Inc.
    Inventors: Hongfei Hu, Benjamin Shane Bustle, Enrique Ayala Vazquez, Nanbo Jin, Miguel Christophy, Erdinc Irci, Salih Yarga, Erica Tong, Anand Lakshmanan, Mattia Pascolini, Tyler Cater, Christopher T. Cheng
  • Patent number: 9742459
    Abstract: An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include an antenna that is tuned using tunable components. The control circuitry may gather information on the current operating mode of the electronic device, sensor data from a proximity sensor, accelerometer, microphone, and other sensors, antenna impedance information for the antenna, and information on the use of connectors in the electronic device. Based on this gathered data, the control circuitry can adjust the tunable components to compensate for antenna detuning due to loading from nearby external objects, may adjust transmit power levels, and may make other wireless circuit adjustments.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: August 22, 2017
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Mattia Pascolini, Yuehui Ouyang, Salih Yarga, Yijun Zhou, Erdinc Irci, Jayesh Nath, Ming-Ju Tsai, Matthew A. Mow, Liang Han, James G. Judkins, Robert W. Schlub
  • Patent number: 9647332
    Abstract: An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. The antenna resonating element may be formed from peripheral conductive housing structures. An audio jack or other connector may be mounted in an opening in the peripheral conductive housing structures. The audio jack may overlap the antenna ground. Contacts in the audio jack may be coupled to an interference mitigation circuit. The interference mitigation circuit may include capacitors coupled to the ground and inductors coupled between the contacts and the capacitors. Radio-frequency signal blocking inductors may be coupled between the interference mitigation circuit and respective ports in an audio circuit.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: May 9, 2017
    Assignee: Apple Inc.
    Inventors: Liang Han, Ming-Ju Tsai, Matthew A. Mow, Yijun Zhou, Mattia Pascolini, Salih Yarga, Enrique Ayala Vazquez, Hongfei Hu, Xu Han, Robert W. Schlub
  • Publication number: 20170054196
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing. The peripheral conductive structures may form housing sidewalls. A slot may be machined into a metal housing that separates the housing sidewalls from a planar rear housing portion that forms a ground for an antenna. The slot may be filled with plastic filler. A parasitic antenna resonating element arm that supports an antenna resonance at high band frequencies may be embedded within the plastic filler. The parasitic antenna resonating element may be formed from a portion of the planar rear housing portion.
    Type: Application
    Filed: August 18, 2015
    Publication date: February 23, 2017
    Inventors: Hongfei Hu, Benjamin Shane Bustle, Enrique Ayala Vazquez, Nanbo Jin, Miguel Christophy, Erdinc Irci, Salih Yarga, Erica Tong, Anand Lakshmanan, Mattia Pascolini, Tyler Cater, Christopher T. Cheng
  • Publication number: 20170033460
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 2, 2017
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Nanbo Jin, Matthew A. Mow, Liang Han, Ming-Ju Tsai, Erica J. Tong, Erdinc Irci, Salih Yarga, Mattia Pascolini, Benjamin Shane Bustle, Ruben Caballero
  • Patent number: 9537219
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna may have an inverted-F antenna resonating element, an antenna ground, and other resonating element structures. A tip of the antenna resonating element and the antenna ground may be separated by a peripheral housing gap filled with plastic. The antenna may be sensitive to capacitance changes induced by the presence of a user's hand overlapping the gap or other portions of the antenna. A hand capacitance sensing electrode may be mounted in the plastic of the gap or elsewhere in the vicinity of the antenna. A transmission line may couple the hand capacitance sensing electrode to the antenna to retune the antenna in the event that the user's hand overlaps the antenna.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: January 3, 2017
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Mattia Pascolini, Hongfei Hu, Erdinc Irci, Yuehui Ouyang, Jennifer M. Edwards, Jayesh Nath, Salih Yarga, Yijun Zhou, Hao Xu
  • Patent number: 9531061
    Abstract: An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. An adjustable inductor may be coupled between the antenna resonating element and the antenna ground. An antenna feed may have a positive feed terminal coupled to the antenna resonating element and a ground antenna feed coupled to the antenna ground. The adjustable inductor may have first and second inductors coupled to respective first and second ports of a switch. The switch may have a third port coupled to the antenna ground. A capacitor may have a first terminal coupled to ground and a second terminal coupled to the first inductor at the first port of the switch. An inductor may be coupled between the antenna resonating element and antenna ground at a location between the adjustable inductor and the antenna feed.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: December 27, 2016
    Assignee: Apple Inc.
    Inventors: Liang Han, Matthew A. Mow, Ming-Ju Tsai, Yijun Zhou, Hongfei Hu, Salih Yarga, Mattia Pascolini, Yuehui Ouyang, Erdinc Irci, Enrique Ayala Vazquez, Robert W. Schlub
  • Patent number: 9502750
    Abstract: An electronic device may have an antenna for providing coverage in wireless communications bands of interest. The wireless communications bands may include a communications band at a first frequency. The antenna may have a parasitic antenna resonating element that supports a low efficiency resonance. In response to operation of the electronic device in free space, the low efficiency resonance will be located at a second frequency that is greater than the first frequency. In response to operation of the electronic device in proximity to a user's body or other external object, the antenna will be loaded and the low efficiency resonance associated with the parasitic antenna resonating element will shift to the communications band at the first frequency. The antenna may include a resonating element formed on a flexible printed circuit or a dielectric carrier such as a plastic support structure.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: November 22, 2016
    Assignee: Apple Inc.
    Inventors: Salih Yarga, Qingxiang Li, Robert W. Schlub
  • Patent number: 9461674
    Abstract: An electronic device may be provided with a primary antenna that is used for transmitting and receiving signals and a secondary antenna that is used for receiving signals. The primary and secondary antennas may be used together in a diversity arrangement when receiving signals. The electronic device may have a transceiver. A phase shifter may be interposed between the transceiver and the secondary antenna. Control circuitry may select a communications band of interest for transmitting signals with the primary antenna. The control circuitry can adjust the phase shifter in real time based on which communications band of interest has been selected for transmission with the primary antenna. The phase shifter may impose a phase shift on signals carried between the secondary antenna and the transceiver that ensures that primary antenna efficiency degradation associated with the presence of the secondary antenna in the vicinity of the primary antenna is avoided.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: October 4, 2016
    Assignee: Apple Inc.
    Inventors: Salih Yarga, Miroslav Samardzija, Qingxiang Li, Robert W. Schlub
  • Patent number: 9331719
    Abstract: An electronic device may be provided with a primary antenna that is used for transmitting and receiving signals and a secondary antenna that is used for receiving signals. The primary and secondary antennas may be used together in a diversity arrangement when receiving signals. The electronic device may have a transceiver. A phase shifter may be interposed between the transceiver and the secondary antenna. Control circuitry may select a communications band of interest for transmitting signals with the primary antenna. The control circuitry can adjust the phase shifter in real time based on which communications band of interest has been selected for transmission with the primary antenna. The phase shifter may impose a phase shift on signals carried between the secondary antenna and the transceiver that ensures that primary antenna efficiency degradation associated with the presence of the secondary antenna in the vicinity of the primary antenna is avoided.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: May 3, 2016
    Assignee: Apple Inc.
    Inventors: Salih Yarga, Miroslav Samardzija, Qingxiang Li, Robert W. Schlub
  • Patent number: 9318806
    Abstract: An electronic device may include balance-fed antenna structures that do not have direct paths to ground. The antenna structures may serve as a Global Positioning System (GPS) antenna and may have a dipole structure having a first and second antenna resonating element arms. The antenna structures may include a conductive path that conveys antenna signals between a first feed terminal on the first antenna resonating element arm and a transmission line. The conductive path may overlap with the second antenna resonating element arm such that current flow through the conductive path induces corresponding current flow in the second antenna resonating element arm. The antenna structures may include an impedance matching short-circuit stub path that couples the first antenna resonating element arm to the second antenna resonating element arm. Choke inductors may be used to help block indirect paths from the antenna structures to ground through adjacent circuitry.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: April 19, 2016
    Assignee: Apple Inc.
    Inventors: Salih Yarga, Miroslav Samardzija, Enrique Ayala Vazquez, Harish Rajagopalan, Qingxiang Li, Robert W. Schlub
  • Patent number: 9318793
    Abstract: A display cover layer may be mounted in an electronic device housing using housing structures such as corner brackets. A slot antenna may be formed from a corner bracket opening, metal traces on a hollow plastic support structure, or other conductive structures. The slot antenna may have a main portion with opposing ends. An antenna feed may be located at one of the ends. The slot antenna may have a slot with one or more bends. The bends may provide the slot antenna with a C-shaped outline. A side branch slot may extend from the main portion of the slot at a location between the two bends. The presence of the side branch slot may enhance antenna bandwidth. A hollow enclosure may serve as an antenna support structure and as a speaker box enclosing a speaker driver. The antenna feed may be positioned so as to overlap the speaker driver.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: April 19, 2016
    Assignee: Apple Inc.
    Inventors: Jiang Zhu, Qingxiang Li, Robert W. Schlub, Miroslav Samardzija, Gordon Coutts, Rodney A. Gomez Angulo, Yi Jiang, Boon W. Shiu, Salih Yarga, Emily B. McMilin, Ruben Caballero
  • Publication number: 20160093955
    Abstract: An electronic device may have wireless circuitry with antennas. An antenna may have an inverted-F antenna resonating element, an antenna ground, and other resonating element structures. A tip of the antenna resonating element and the antenna ground may be separated by a peripheral housing gap filled with plastic. The antenna may be sensitive to capacitance changes induced by the presence of a user's hand overlapping the gap or other portions of the antenna. A hand capacitance sensing electrode may be mounted in the plastic of the gap or elsewhere in the vicinity of the antenna. A transmission line may couple the hand capacitance sensing electrode to the antenna to retune the antenna in the event that the user's hand overlaps the antenna.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Enrique Ayala Vazquez, Mattia Pascolini, Hongfei Hu, Erdinc Irci, Yuehui Ouyang, Jennifer M. Edwards, Jayesh Nath, Salih Yarga, Yijun Zhou, Hao Xu
  • Publication number: 20160064801
    Abstract: An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. An adjustable inductor may be coupled between the antenna resonating element and the antenna ground. An antenna feed may have a positive feed terminal coupled to the antenna resonating element and a ground antenna feed coupled to the antenna ground. The adjustable inductor may have first and second inductors coupled to respective first and second ports of a switch. The switch may have a third port coupled to the antenna ground. A capacitor may have a first terminal coupled to ground and a second terminal coupled to the first inductor at the first port of the switch. An inductor may be coupled between the antenna resonating element and antenna ground at a location between the adjustable inductor and the antenna feed.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Liang Han, Matthew A. Mow, Ming-Ju Tsai, Yijun Zhou, Hongfei Hu, Salih Yarga, Mattia Pascolini, Yuehui Ouyang, Erdinc Irci, Enrique Ayala Vazquez, Robert W. Schlub
  • Publication number: 20160064812
    Abstract: An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. The antenna resonating element may be formed from peripheral conductive housing structures. An audio jack or other connector may be mounted in an opening in the peripheral conductive housing structures. The audio jack may overlap the antenna ground. Contacts in the audio jack may be coupled to an interference mitigation circuit. The interference mitigation circuit may include capacitors coupled to the ground and inductors coupled between the contacts and the capacitors. Radio-frequency signal blocking inductors may be coupled between the interference mitigation circuit and respective ports in an audio circuit.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Liang Han, Ming-Ju Tsai, Matthew A. Mow, Yijun Zhou, Mattia Pascolini, Salih Yarga, Enrique Ayala Vazquez, Hongfei Hu, Xu Han, Robert W. Schlub
  • Patent number: 9257750
    Abstract: An electronic device may have an antenna for providing coverage in wireless communications bands of interest. The wireless communications bands may include first, second, third, and fourth communications bands. The antenna may have an antenna resonating element with first, second, and third arms and may have an antenna ground. The antenna ground may be formed form metal housing structures and other conductive structures in the electronic device. The first arm may be configured to exhibit an antenna resonance in the first and third communications bands. The second arm may be configured to exhibit an antenna resonance in the second communications band. The third arm may be configured to exhibit an antenna resonance in the fourth communications band. The third arm may be located between the first arm and the ground. A diagonal crossover path may pass over a return path and may couple the second and third arms.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: February 9, 2016
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Miroslav Samardzija, Salih Yarga, Robert W. Schlub
  • Patent number: 9236659
    Abstract: An electronic device may be provided with a housing. The housing may have a periphery that is surrounded by peripheral conductive structures such as a segmented peripheral metal member. A segment of the peripheral metal member may be separated from a ground by a slot. An antenna feed may have a positive antenna terminal coupled to the peripheral metal member and a ground terminal coupled to the ground and may feed both an inverted-F antenna structure that is formed from the peripheral metal member and the ground and a slot antenna structure that is formed from the slot. Control circuitry may tune the antenna by controlling adjustable components that are coupled to the peripheral metal member. The adjustable components may include adjustable inductors and adjustable capacitors.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: January 12, 2016
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Hongfei Hu, Mattia Pascolini, Yuehui Ouyang, Yijun Zhou, Matthew A. Mow, Robert W. Schlub, Erdinc Irci, Salih Yarga, Ming-Ju Tsai, Liang Han, Thomas E. Biedka, Nicholas S. Reimnitz