Patents by Inventor Salvador Marquez

Salvador Marquez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9936947
    Abstract: Suture locking clamps for securing prostheses such as heart valves or annuloplasty rings with sutures and without knots improve the ease of implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: April 10, 2018
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez, Donald E. Bobo, Jr.
  • Patent number: 9848984
    Abstract: Devices and methods for securing prostheses such as heart valves or annuloplasty rings with sutures and without using knots are disclosed. The devices are particularly well suited for traditional surgery or minimally invasive surgery, and improve the ease of implantation by eliminating surgical knots a clinician would normally tie in the limited space in and around the implant site. The devices have opposed the clamp halves surrounded by a coil spring. Sutures pass between the clamp halves and the coil spring has an inner coil diameter sufficient to compress the sutures between the clamp. A retention member positioned between the clamp halves maintains a minimum space and therebetween to enable the locking device to be slid along the sutures into position, and to adjust the tension of the sutures therethrough. A delivery tool may be used to deliver and deploy the locking devices.
    Type: Grant
    Filed: July 12, 2015
    Date of Patent: December 26, 2017
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez
  • Publication number: 20170281346
    Abstract: A cardiac implant system including a cardiac implant such as an annuloplasty ring, a prosthetic heart valve, or a valved conduit pre-assembled at the time of manufacture with devices for securing the implant to a heart valve annulus using knotless suture fasteners. The knotless suture fasteners may be embedded within a pliant sealing edge of the cardiac implant, or they may be positioned adjacent to the sealing edge. The knotless suture fasteners are spring-biased so as to grip onto annulus anchoring sutures pass to therethrough upon removal of a restraining device, such as a hypotube inserted within the suture fasteners. Guide tubes are assembled in line with the suture fasteners to permit introduction of suture snares that pass through the suture fasteners and through the sealing edge to facilitate capture of the pre-installed annulus anchoring sutures.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 5, 2017
    Inventors: Salvador Marquez, Brian S. Conklin, Manouchehr A. Miraki, Yoon H. Kwon
  • Publication number: 20170258585
    Abstract: Sensor-integrated prosthetic valves that can comprise a variety of features, including a plurality of valve leaflets, a frame assembly configured to support the plurality of valve leaflets and define a plurality of commissure supports terminating at an outflow end of the prosthetic valve, a sensor device associated with the frame assembly and configured to generate a sensor signal, for example, a sensor signal indicating deflection of one or more of the plurality of commissure supports, and a transmitter assembly configured to receive the sensor signal from the sensor device and wirelessly transmit a transmission signal that is based at least in part on the sensor signal.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 14, 2017
    Inventors: Salvador Marquez, Da-Yu Chang, Cindy Woo, Hao-Chung Yang, Lynn T. Dang, Javier A. Sanguinetti, Alexander H. Siemons, Yaron Keidar, Virginia Qi Lin, Brian S. Conklin, Donald E. Bobo, JR.
  • Publication number: 20170071600
    Abstract: Suture locking clamps for securing prostheses such as heart valves or annuloplasty rings with sutures and without knots improve the ease of implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
    Type: Application
    Filed: November 28, 2016
    Publication date: March 16, 2017
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez, Donald E. Bobo, JR.
  • Publication number: 20170027695
    Abstract: A cardiac implant system including a cardiac implant such as an annuloplasty ring, a prosthetic heart valve, or a valved conduit pre-assembled at the time of manufacture with devices for securing the implant to a heart valve annulus using knotless suture fasteners. The knotless suture fasteners may be embedded within a pliant sealing edge of the cardiac implant, or they may be positioned adjacent to the sealing edge. The knotless suture fasteners are spring-biased so as to grip onto annulus anchoring sutures pass to therethrough upon removal of a restraining device, such as a hypotube inserted within the suture fasteners. Guide tubes are assembled in line with the suture fasteners to permit introduction of suture snares that pass through the suture fasteners and through the sealing edge to facilitate capture of the pre-installed annulus anchoring sutures.
    Type: Application
    Filed: October 17, 2016
    Publication date: February 2, 2017
    Inventors: Salvador Marquez, Brian S. Conklin, Manouchehr A. Miraki, Yoon H. Kwon
  • Patent number: 9504466
    Abstract: Methods of deploying knotless suture locking clamps for securing prostheses such as heart valves or annuloplasty rings to facilitate implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
    Type: Grant
    Filed: July 11, 2015
    Date of Patent: November 29, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez, Donald E. Bobo, Jr.
  • Patent number: 9468527
    Abstract: A cardiac implant system including a cardiac implant such as an annuloplasty ring, a prosthetic heart valve, or a valved conduit pre-assembled at the time of manufacture with devices for securing the implant to a heart valve annulus using knotless suture fasteners. The knotless suture fasteners may be embedded within a pliant sealing edge of the cardiac implant, or they may be positioned adjacent to the sealing edge. The knotless suture fasteners are spring-biased so as to grip onto annulus anchoring sutures pass to therethrough upon removal of a restraining device, such as a hypotube inserted within the suture fasteners. Guide tubes are assembled in line with the suture fasteners to permit introduction of suture snares that pass through the suture fasteners and through the sealing edge to facilitate capture of the pre-installed annulus anchoring sutures.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: October 18, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Brian S. Conklin, Manouchehr A. Miraki, Yoon H. Kwon
  • Publication number: 20150320414
    Abstract: Devices and methods for securing prostheses such as heart valves or annuloplasty rings with sutures and without using knots are disclosed. The devices are particularly well suited for traditional surgery or minimally invasive surgery, and improve the ease of implantation by eliminating surgical knots a clinician would normally tie in the limited space in and around the implant site. The devices have opposed the clamp halves surrounded by a coil spring. Sutures pass between the clamp halves and the coil spring has an inner coil diameter sufficient to compress the sutures between the clamp. A retention member positioned between the clamp halves maintains a minimum space and therebetween to enable the locking device to be slid along the sutures into position, and to adjust the tension of the sutures therethrough. A delivery tool may be used to deliver and deploy the locking devices.
    Type: Application
    Filed: July 12, 2015
    Publication date: November 12, 2015
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez
  • Publication number: 20150313590
    Abstract: Methods of deploying knotless suture locking clamps for securing prostheses such as heart valves or annuloplasty rings to facilitate implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
    Type: Application
    Filed: July 11, 2015
    Publication date: November 5, 2015
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez, Donald E. Bobo, JR.
  • Patent number: 9078645
    Abstract: Devices for securing prostheses such as heart valves or annuloplasty rings with sutures and without using knots are disclosed. The devices are particularly well suited for traditional surgery or minimally invasive surgery, and improve the ease of implantation by eliminating surgical knots a clinician would normally tie in the limited space in and around the implant site. The devices have opposed the clamp halves surrounded by a coil spring. Sutures pass between the clamp halves and the coil spring has an inner coil diameter sufficient to compress the sutures between the clamp. A retention member positioned between the clamp halves maintains a minimum space and therebetween to enable the locking device to be slid along the sutures into position, and to adjust the tension of the sutures therethrough. A delivery tool may be used to deliver and deploy the locking devices.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: July 14, 2015
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez
  • Patent number: 9078652
    Abstract: Suture locking clamps for securing prostheses such as heart valves or annuloplasty rings with sutures and without knots improve the ease of implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: July 14, 2015
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez, Donald E. Bobo, Jr.
  • Publication number: 20140371842
    Abstract: A cardiac implant system including a cardiac implant such as an annuloplasty ring, a prosthetic heart valve, or a valved conduit pre-assembled at the time of manufacture with devices for securing the implant to a heart valve annulus using knotless suture fasteners. The knotless suture fasteners may be embedded within a pliant sealing edge of the cardiac implant, or they may be positioned adjacent to the sealing edge. The knotless suture fasteners are spring-biased so as to grip onto annulus anchoring sutures pass to therethrough upon removal of a restraining device, such as a hypotube inserted within the suture fasteners. Guide tubes are assembled in line with the suture fasteners to permit introduction of suture snares that pass through the suture fasteners and through the sealing edge to facilitate capture of the pre-installed annulus anchoring sutures.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventors: Salvador Marquez, Brian S. Conklin, Manouchehr A. Miraki, Yoon H. Kwon
  • Publication number: 20130282028
    Abstract: Suture locking clamps for securing prostheses such as heart valves or annuloplasty rings with sutures and without knots improve the ease of implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
    Type: Application
    Filed: June 18, 2013
    Publication date: October 24, 2013
    Inventors: Brian S. Conklin, Louis A. Campbell, Salvador Marquez, Donald E. Bobo, Jr.
  • Patent number: 8062359
    Abstract: A connecting band for a highly flexible tissue-type heart valve having a stent with cusps and commissures that are permitted to move radially. The connecting band follows the cusps and commissures and extends outwardly. The valve is connected to the natural tissue along the undulating connecting band using conventional techniques, such as sutures. The connecting band may be a cloth-covered inner suture-permeable member and attaches to the underside of the valve at the cusps to provide support to the stent and to the outer side of the valve at the commissures. The connecting band includes commissure portions defining generally axial gaps that help permit flexing of the valve. The inner member may include one or more slits along the cusps to enhance flexibility. The inner member may further include a continuous outwardly projecting sewing ridge around its periphery which includes a series of ribs separated by grooves around the inflow edge of the cusps.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: November 22, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Derek Nguyen, Diana Nguyen-Thien-Nhon
  • Publication number: 20110257736
    Abstract: A highly flexible tissue-type heart valve is disclosed having a structural stent in a generally cylindrical configuration with cusps and commissures that are permitted to move radially. The stent commissures are constructed so that the cusps are pivotably or flexibly coupled together at the commissures to permit relative movement therebetween. The stent may be cloth-covered and may be a single element or may be made in three separate elements for a three cusp valve, each element having a cusp portion and two commissure portions; adjacent commissure portions for each pair of adjacent stent element combining to form the stent commissures. If the stent has separate elements their commissure portions may be pivotably or flexible coupled, or may be designed to completely separate into independent leaflets at bioresorbable couples. The cloth covering may have an outwardly projecting flap that mates with valve leaflets (e.g., pericardial leaflets) along the cusps and commissures.
    Type: Application
    Filed: June 28, 2011
    Publication date: October 20, 2011
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Salvador Marquez, Claudio Argento, Richard S. Rhee
  • Publication number: 20100161046
    Abstract: A holder for a highly flexible tissue-type heart valve is disclosed that maintains an implant shape to the valve. The holder may have cusp and commissure contacting supports, and may be attached at all six such supports, or only three. The holder may be flexible to permit inward flexing of the heart valve during implant for greater visibility when implanting using a running suture method. The holder may be formed of flexible wires such as Nitinol, and shaped to resist excessive axial and torsional deformation of the valve. A short handle connector suitable for manual grasping may be attached and stored with the valve, with the handle connector having a coupling for receiving a longer delivery handle. A two stage holder may be utilized to accommodate different implant methods.
    Type: Application
    Filed: March 4, 2010
    Publication date: June 24, 2010
    Applicant: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Claudio Argento, Richard S. Rhee
  • Patent number: 7473275
    Abstract: A flexible support frame for a prosthetic heart valve having commissure tips that are shaped to even out stresses imposed during use. The support frame is an elongated wire-like element formed by a plurality, typically three, of arcuate cusp regions on an inflow end alternating with the same number of commissures terminating in tips on an outflow end. The commissure tips are elongated relative to more simple shapes. The commissure tips may be shaped with a complex curve having two enlarged convex flexure portions separated by a concave bridge portion at the midpoint of the commissure tip. The support frame may be fabricated by separating a two-dimensional blank from a sheet and then converting the blank into a three-dimensional support frame shape. The cross-sectional thickness of the support frame may be variable, such as by adjusting the thickness of the pattern of the two-dimensional blank in the sheet.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: January 6, 2009
    Assignee: Edwards Lifesciences Corporation
    Inventor: Salvador Marquez
  • Publication number: 20060229719
    Abstract: A connecting band for a highly flexible tissue-type heart valve having a stent with cusps and commissures that are permitted to move radially. The connecting band follows the cusps and commissures and extends outwardly. The valve is connected to the natural tissue along the undulating connecting band using conventional techniques, such as sutures. The connecting band may be a cloth-covered inner suture-permeable member and attaches to the underside of the valve at the cusps to provide support to the stent and to the outer side of the valve at the commissures. The connecting band includes commissure portions defining generally axial gaps that help permit flexing of the valve. The inner member may include one or more slits along the cusps to enhance flexibility. The inner member may further include a continuous outwardly projecting sewing ridge around its periphery which includes a series of ribs separated by grooves around the inflow edge of the cusps.
    Type: Application
    Filed: April 6, 2005
    Publication date: October 12, 2006
    Inventors: Salvador Marquez, Derek Nguyen, Diana Nguyen-Thien-Nhon
  • Publication number: 20060229718
    Abstract: A flexible support frame for a prosthetic heart valve having commissure tips that are shaped to even out stresses imposed during use. The support frame is an elongated wire-like element formed by a plurality, typically three, of arcuate cusp regions on an inflow end alternating with the same number of commissures terminating in tips on an outflow end. The commissure tips are elongated relative to more simple shapes. The commissure tips may be shaped with a complex curve having two enlarged convex flexure portions separated by a concave bridge portion at the midpoint of the commissure tip. The support frame may be fabricated by separating a two-dimensional blank from a sheet and then converting the blank into a three-dimensional support frame shape. The cross-sectional thickness of the support frame may be variable, such as by adjusting the thickness of the pattern of the two-dimensional blank in the sheet.
    Type: Application
    Filed: January 11, 2006
    Publication date: October 12, 2006
    Inventor: Salvador Marquez