Patents by Inventor Salvatore C. Scuderi

Salvatore C. Scuderi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240060690
    Abstract: An absorption chiller system includes a generator section, a condenser section, an evaporator section and an absorber section all in fluid communication with each other and which operate to circulate a refrigerant therethrough. The evaporator section includes a transport membrane heat exchanger. The transport membrane heat exchanger includes a first and a second flow path. The first flow path is operable to flow the refrigerant therethrough under a vacuum pressure that is low enough to vaporize the refrigerant within the first flow path. The second flow path is operable to pass a fluid having water therethrough. Both water and heat are transferred from the fluid in the second flow path to the refrigerant in the first flow path through a membrane-based material of the transport membrane heat exchanger, such that the fluid passing through the second flow path has at least a portion of its water removed and is cooled.
    Type: Application
    Filed: May 5, 2023
    Publication date: February 22, 2024
    Applicant: Scuderi Group, Inc.
    Inventor: Salvatore C. SCUDERI
  • Patent number: 11719136
    Abstract: A bottoming cycle power system includes a turbo-expander operable to rotate a turbo-crankshaft as a flow of exhaust gas from a combustion process passes through the turbo-expander. A turbo-compressor is operable to compress the flow of exhaust gas after the exhaust gas passes through the turbo-expander. An open cycle absorption chiller system includes an absorber section operable to receive the flow of exhaust gas from the turbo-expander and to mix the flow of exhaust gas with a first refrigerant solution within the absorber section. The first refrigerant solution is operable to absorb water from the exhaust gas as the exhaust gas passes through the first refrigerant solution. The absorber section is operable to route the flow of exhaust gas to the turbo-compressor after the flow of exhaust gas has passed through the first refrigerant solution.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: August 8, 2023
    Assignee: SCUDERI GROUP, INC.
    Inventor: Salvatore C. Scuderi
  • Patent number: 11639677
    Abstract: A carbon dioxide capture system includes a first capture tank containing carbon dioxide absorbent material which operates to absorb carbon dioxide from a flow of exhaust gas from an internal combustion engine. A heat exchange loop is in heat exchange communication with the first capture tank and further in heat exchange communication with one of the flow of exhaust gas or a flow of engine coolant from the internal combustion engine. A heat exchange fluid is operable to flow through the heat exchange loop. The heat exchange fluid operates to transfer heat from the exhaust gas or the engine coolant to the first capture tank. The heat from the exhaust gas or the engine coolant operates to release a portion of the carbon dioxide absorbed by the carbon dioxide absorbent material in the first capture tank.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: May 2, 2023
    Assignee: Scuderi Group, Inc.
    Inventor: Salvatore C. Scuderi
  • Patent number: 11624307
    Abstract: A bottoming cycle power system includes a turbine-generator. The turbine-generator includes a turbo-expander and turbo-compressor disposed on a turbo-crankshaft. The turbo-expander is operable to rotate the turbo-crankshaft as a flow of exhaust gas from a combustion process passes through the turbo-expander. The turbo-compressor is operable to compress the flow of exhaust gas after the exhaust gas passes through the turbo-expander. An exhaust gas heat exchanger includes first and second flow paths operable to exchange heat therebetween. The first flow path is operable to receive the flow of exhaust gas from the turbo-expander prior to the exhaust gas being compressed by the turbo-compressor. The second flow path is operable to receive the flow of exhaust gas from the turbo-compressor after the exhaust gas has been compressed by the turbo-compressor.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: April 11, 2023
    Assignee: SCUDERI GROUP, INC.
    Inventor: Salvatore C. Scuderi
  • Publication number: 20220412230
    Abstract: A bottoming cycle power system includes a turbo-expander operable to rotate a turbo-crankshaft as a flow of exhaust gas from a combustion process passes through the turbo-expander. A turbo-compressor is operable to compress the flow of exhaust gas after the exhaust gas passes through the turbo-expander. An open cycle absorption chiller system includes an absorber section operable to receive the flow of exhaust gas from the turbo-expander and to mix the flow of exhaust gas with a first refrigerant solution within the absorber section. The first refrigerant solution is operable to absorb water from the exhaust gas as the exhaust gas passes through the first refrigerant solution. The absorber section is operable to route the flow of exhaust gas to the turbo-compressor after the flow of exhaust gas has passed through the first refrigerant solution.
    Type: Application
    Filed: April 29, 2022
    Publication date: December 29, 2022
    Applicant: Scuderi Group, Inc.
    Inventor: Salvatore C. SCUDERI
  • Publication number: 20220325649
    Abstract: A bottoming cycle power system includes a turbine-generator. The turbine-generator includes a turbo-expander and turbo-compressor disposed on a turbo-crankshaft. The turbo-expander is operable to rotate the turbo-crankshaft as a flow of exhaust gas from a combustion process passes through the turbo-expander. The turbo-compressor is operable to compress the flow of exhaust gas after the exhaust gas passes through the turbo-expander. An exhaust gas heat exchanger includes first and second flow paths operable to exchange heat therebetween. The first flow path is operable to receive the flow of exhaust gas from the turbo-expander prior to the exhaust gas being compressed by the turbo-compressor. The second flow path is operable to receive the flow of exhaust gas from the turbo-compressor after the exhaust gas has been compressed by the turbo-compressor.
    Type: Application
    Filed: January 21, 2022
    Publication date: October 13, 2022
    Applicant: Scuderi Group, Inc.
    Inventor: Salvatore C. SCUDERI
  • Patent number: 11415052
    Abstract: A method of generating electrical power includes expanding a flow of exhaust gas from a combustion process as the exhaust gas passes through a turbo-expander disposed on a turbo-crankshaft. The flow of exhaust gas from the turbo-expander is routed through a first flow path of an exhaust gas heat exchanger. The flow of exhaust gas from the first flow path is compressed as the exhaust gas passes through a turbo-compressor disposed on the turbo-crankshaft. The flow of exhaust gas from the turbo-compressor is routed through a second flow path of the exhaust gas heat exchanger. Heat from the first flow path is transferred to the second flow path to cool the exhaust gas in the first flow path and heat the exhaust gas in the second flow path. Electrical power is generated from a generator disposed on the turbo-crankshaft.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: August 16, 2022
    Assignee: SCUDERI GROUP, INC.
    Inventor: Salvatore C. Scuderi
  • Patent number: 11346256
    Abstract: A method of generating electric power includes expanding a flow of exhaust gas from a combustion process as the exhaust gas passes through a turbo-expander disposed on a turbo-crankshaft. The flow of exhaust gas from the turbo-expander is routed through an absorber section of an open cycle absorption chiller system. Water from the exhaust gas is absorbed via a first refrigerant solution disposed in the absorber section as the exhaust gas passes through the first refrigerant solution and out of the absorber section. The flow of exhaust gas from the absorber section is compressed as the exhaust gas passes through a turbo-compressor disposed on the turbo-crankshaft. Electrical power is generated from a bottoming cycle generator disposed on the turbo-crankshaft.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: May 31, 2022
    Assignee: SCUDERI GROUP, INC.
    Inventor: Salvatore C. Scuderi
  • Patent number: 11339712
    Abstract: A bottoming cycle power system includes a turbine generator and an open cycle absorption system. The turbine-generator includes a turbo-expander and turbo-compressor disposed on a turbo-crankshaft. The turbo-expander is operable to rotate the turbo-crankshaft as a flow of exhaust gas from a combustion process passes through the turbo-expander. The turbo-compressor is operable to compress the flow of exhaust gas after the exhaust gas passes through the turbo-expander. The open cycle absorption chiller system includes an absorber section that is operable to receive the flow of exhaust gas from the turbo-expander. The absorber section includes a first refrigerant solution that is operable to absorb water from the exhaust gas as the exhaust gas passes through the first refrigerant solution. The absorber section is also operable to route the flow of exhaust gas to the turbo-compressor after the flow of exhaust gas has passed through the first refrigerant solution.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: May 24, 2022
    Assignee: SCUDERI GROUP, INC.
    Inventor: Salvatore C. Scuderi
  • Patent number: 11286832
    Abstract: A bottoming cycle power system includes a turbine-generator having a turbo-expander and turbo-compressor disposed on a turbo-crankshaft. The turbo-expander is operable to rotate the turbo-crankshaft as a flow of exhaust gas from a combustion process passes through the turbo-expander. The turbo-compressor is operable to compress the flow of exhaust gas after it passes through the turbo-expander. An exhaust-gas heat exchanger having first and second flow paths. The first flow path is operable to receive the flow of exhaust gas from the turbo-expander prior to the exhaust gas being compressed by the turbo-compressor. The second flow path is operable to receive the flow of exhaust gas from the turb-compressor. A processing system is operable to cool the flow of exhaust gas after the exhaust gas has passed through the first flow path and prior to the exhaust gas being compressed by the turbo-compressor.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: March 29, 2022
    Assignee: SCUDERI GROUP, INC.
    Inventor: Salvatore C. Scuderi
  • Publication number: 20150322874
    Abstract: A number of exemplary power generation systems and methods are disclosed herein. In some embodiments, a compressed air energy storage system, optionally with split-cycle engine technology, is used to store energy obtained from the grid during off-peak hours and to supply stored energy to the grid and/or to an end user during on-peak hours. The system can include heat recovery features and can supply heat to the end user. In some embodiments, a generator system is used to provide power to an end user and to the grid. The generator can be maintained in a high efficiency operating range (e.g., at elevated or full load), even when the generator output exceeds the end user's demand, with any excess generated power being fed to the grid.
    Type: Application
    Filed: May 11, 2015
    Publication date: November 12, 2015
    Applicant: SCUDERI GROUP, INC.
    Inventors: Nicholas Joseph Scuderi, Salvatore C. Scuderi, Stephen P. Scuderi
  • Patent number: 8807099
    Abstract: A split-cycle engine includes an expander, the expander including an expansion piston received within an expansion cylinder. A compressor includes a compression piston received within a compression cylinder. A crossover passage interconnects the compression and expansion cylinders. An intake manifold is connected to the compression cylinder. A boosting device providing a 1.7 bar absolute or greater boost pressure level is connected to the intake manifold. An intake valve is disposed between the intake manifold and the compression cylinder. The intake valve closing is timed to provide a compressor volumetric efficiency of 0.75 or greater. A compressor displacement volume is sized relative to an expander displacement volume such that the combination of compressor displacement volume and boost pressure level provides an expander volumetric efficiency relative to ambient conditions that is 0.90 or greater.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 19, 2014
    Assignee: Scuderi Group, LLC
    Inventors: David P. Branyon, Kevin L. Hoag, Salvatore C. Scuderi
  • Publication number: 20130269632
    Abstract: In some embodiments, systems are provided in which electric power generated from a renewable energy source such as a solar or wind power system during low demand periods is used to drive an electric motor which turns an air hybrid split-cycle engine. The split-cycle engine operates in AC mode during this time to compress air into a storage tank. Later, during high demand periods, compressed air stored in the tank and added fuel are fed to the split-cycle engine, which operates in AEF mode. The work generated by the split-cycle engine turns a generator to produce electric power. When the supply of compressed air stored in the storage tank is depleted, the split-cycle engine can operate in an NF mode to serve as a backup generator, or in an FC mode to serve as a backup generator while simultaneously recharging the air storage tank.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 17, 2013
    Inventors: Riccardo Meldolesi, Stephen P. Scuderi, Salvatore C. Scuderi
  • Publication number: 20120298086
    Abstract: Methods, systems, and devices are disclosed that generally involve split-cycle engines in which natural gas, and in particular natural gas supplied from a low pressure source, is used as the fuel for combustion. In one embodiment, natural gas is supplied directly to the expansion cylinder via a gas inlet valve just before and/or just after the expansion piston reaches top dead center, when the pressure within the expansion cylinder is relatively low. A crossover expansion valve is then opened to distribute the natural gas in the expansion cylinder and mix it with high pressure air from a crossover passage before ignition during a power stroke. Natural gas split-cycle air hybrid engines are also disclosed.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Applicant: SCUDERI GROUP, LLC
    Inventor: Salvatore C. Scuderi
  • Publication number: 20120073551
    Abstract: A split-cycle engine includes an expander, the expander including an expansion piston received within an expansion cylinder. A compressor includes a compression piston received within a compression cylinder. A crossover passage interconnects the compression and expansion cylinders. An intake manifold is connected to the compression cylinder. A boosting device providing a 1.7 bar absolute or greater boost pressure level is connected to the intake manifold. An intake valve is disposed between the intake manifold and the compression cylinder. The intake valve closing is timed to provide a compressor volumetric efficiency of 0.75 or greater. A compressor displacement volume is sized relative to an expander displacement volume such that the combination of compressor displacement volume and boost pressure level provides an expander volumetric efficiency relative to ambient conditions that is 0.90 or greater.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 29, 2012
    Applicant: SCUDERI GROUP, LLC
    Inventors: David P. Branyon, Kevin L. Hoag, Salvatore C. Scuderi
  • Patent number: 7954462
    Abstract: A split-cycle air hybrid engine operatively connects an air reservoir to a split cycle engine. A power piston is received within a power cylinder and operatively connected to a crankshaft such that the power piston reciprocates through an expansion stroke and an exhaust stroke during a single revolution of the crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke in a single rotation of the crankshaft. The compression cylinder is selectively controllable to place the compression piston in a compression mode or an idle mode. An air reservoir is operatively connected between the compression cylinder and the power cylinder and selectively operable to receive compressed air from the compression cylinder and to deliver compressed air to the power cylinder for use in transmitting power to the crankshaft during engine operation.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: June 7, 2011
    Assignee: Scuderi Group, LLC
    Inventors: Salvatore C. Scuderi, Stephen P. Scuderi
  • Patent number: 7823547
    Abstract: A waste heat recovery system for a split-cycle engine includes a heat exchange unit. An air compressor device is in communication with the heat exchange unit. A waste heat input receives waste heat from the engine and is in fluid communication with the heat exchange unit. An ambient air intake connected to the air compressor device draws air into the air compressor device. A compressed air outlet member on the air compressor device in fluid communication with a compression cylinder of the split-cycle engine delivers compressed air from the air compressor device to the engine. Engine waste heat is communicated to the heat exchange unit and energy from the waste heat is used to drive the air compressor device, causing the air compressor device to draw in ambient air through the ambient air intake, compress the ambient air, and deliver compressed air to the engine through the compressed air outlet.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: November 2, 2010
    Assignee: Scuderi Group, LLC
    Inventors: Charles K. Forner, Sr., Salvatore C. Scuderi, Stephen P. Scuderi
  • Publication number: 20090266347
    Abstract: A split-cycle air hybrid engine operatively connects an air reservoir to a split cycle engine. A power piston is received within a power cylinder and operatively connected to a crankshaft such that the power piston reciprocates through an expansion stroke and an exhaust stroke during a single revolution of the crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke in a single rotation of the crankshaft. The compression cylinder is selectively controllable to place the compression piston in a compression mode or an idle mode. An air reservoir is operatively connected between the compression cylinder and the power cylinder and selectively operable to receive compressed air from the compression cylinder and to deliver compressed air to the power cylinder for use in transmitting power to the crankshaft during engine operation.
    Type: Application
    Filed: June 19, 2009
    Publication date: October 29, 2009
    Applicant: SCUDERI GROUP, LLC
    Inventors: Salvatore C. Scuderi, Stephen P. Scuderi
  • Patent number: 7603970
    Abstract: A split-cycle air hybrid engine operatively connects an air reservoir to a split cycle engine. A power piston is received within a power cylinder and operatively connected to a crankshaft such that the power piston reciprocates through an expansion stroke and an exhaust stroke during a single revolution of the crankshaft. A compression piston is received within a compression cylinder and operatively connected to the crankshaft such that the compression piston reciprocates through an intake stroke and a compression stroke in a single rotation of the crankshaft. The compression cylinder is selectively controllable to place the compression piston in a compression mode or an idle mode. An air reservoir is operatively connected between the compression cylinder and the power cylinder and selectively operable to receive compressed air from the compression cylinder and to deliver compressed air to the power cylinder for use in transmitting power to the crankshaft during engine operation.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: October 20, 2009
    Assignee: Scuderi Group, LLC
    Inventors: Salvatore C. Scuderi, Stephen P. Scuderi
  • Publication number: 20090199556
    Abstract: A waste heat recovery system for a split-cycle engine includes a heat exchange unit. An air compressor device is in communication with the heat exchange unit. A waste heat input receives waste heat from the engine and is in fluid communication with the heat exchange unit. An ambient air intake connected to the air compressor device draws air into the air compressor device. A compressed air outlet member on the air compressor device in fluid communication with a compression cylinder of the split-cycle engine delivers compressed air from the air compressor device to the engine. Engine waste heat is communicated to the heat exchange unit and energy from the waste heat is used to drive the air compressor device, causing the air compressor device to draw in ambient air through the ambient air intake, compress the ambient air, and deliver compressed air to the engine through the compressed air outlet.
    Type: Application
    Filed: April 20, 2009
    Publication date: August 13, 2009
    Inventors: Charles K. Forner, SR., Salvatore C. Scuderi, Stephen P. Scuderi