Patents by Inventor Sam Eathington

Sam Eathington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210259176
    Abstract: A method is provided for use in analyzing seeds, in a population of seeds, for one or more desired characteristic. The method includes removing tissue from individual seeds in a population of seeds using an automated seed sampler, while preserving germination viability of the seeds, and analyzing the tissue for the presence or absence of one or more desired characteristic. The method then includes, based on the analysis of the tissue, quantifying the one or more desired characteristic for each of the individual seeds that possess the one or more desired characteristic.
    Type: Application
    Filed: May 13, 2021
    Publication date: August 26, 2021
    Inventors: David BUTRUILLE, Kevin L. DEPPERMANN, Stanton DOTSON, Sam EATHINGTON, Heather FORBES, Michael W. PETERSEN, Bruce SCHNICKER, John TAMULONIS
  • Patent number: 11006593
    Abstract: A method is provided for use in a plant breeding program to generate a population having one or more desired traits. The method includes removing a tissue sample from each of one or more seeds using an automated seed sampler while preserving germination viability of the sampled seeds; analyzing the tissue samples for the presence or absence of a genetic sequence associated with at least one desired trait; based on the analysis of the tissue samples, cultivating plants from the sampled seeds that either possess or lack the genetic sequence associated with the at least one desired trait; creating a parental cross using at least one of the cultivated plants; and selecting seeds from the parental cross and cultivating offspring of the parental cross using the selected seeds.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: May 18, 2021
    Assignee: Monsanto Technology LLC
    Inventors: David Butruille, Kevin L. Deppermann, Stanton Dotson, Sam Eathington, Heather Forbes, Michael W. Petersen, Bruce Schnicker, John Tamulonis
  • Publication number: 20200333365
    Abstract: An automated method for removing tissue from a seed is provided. The automated method includes singulating a seed from a plurality of seeds and imaging the singulated seed to obtain at least one characteristic of the seed. The automated method further includes positioning the singulated seed in a sampler of an automated seed sampling assembly and removing, by the sampler, tissue from the singulated seed based on the at least one characteristic of the seed.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: David BUTRUILLE, Kevin L. DEPPERMANN, Stanton DOTSON, Sam EATHINGTON, David W. FINLEY, William M. FISCHER, Heather M. FORBES, John M. JENSEN, Allen N. ONDES, Michael W. PETERSEN, Bruce SCHNICKER, John TAMULONIS
  • Patent number: 10705102
    Abstract: A seed sampling system is provided having an automated seed loading assembly including a seed bin and being operable to singulate seeds from a plurality of seeds within the seed bin. The system also includes an automated seed sampling assembly operable to remove tissue samples from the singulated seeds, and an automated seed transport assembly operable to transfer the singulated seeds from the seed loading assembly to the seed sampling assembly. The seed transport assembly includes multiple retention members. Each of the retention members is movable relative to the seed loading assembly and to the seed sampling assembly. The seed transport assembly is operable to position one of the multiple retention members adjacent to the seed loading assembly for engaging one of the singulated seeds, while positioning another of the retention members adjacent to the seed sampling assembly for presenting another of the singulated seeds to the seed sampling assembly.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: July 7, 2020
    Assignee: Monsanto Technology LLC
    Inventors: Kevin L. Deppermann, Michael W. Petersen, Allen N. Ondes, David W. Finley, William M. Fischer, John M. Jensen, David Butruille, Stanton Dotson, Sam Eathington, Heather M. Forbes, Bruce Schnicker, John Tamulonis
  • Patent number: 10550424
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant by the use of direct nucleic acid sequence information. The methods describe the identification and accumulation of preferred nucleic acid sequences in the germplasm of a breeding population of plants.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: February 4, 2020
    Assignee: Monsanto Technology LLC
    Inventors: Stanton B Dotson, Sam Eathington, Zoe McCuddin, Nengbing Tao, Fenggao Dong, Frederic Achard
  • Patent number: 10544471
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant by the use of direct nucleic acid sequence information. The methods describe the identification and accumulation of preferred nucleic acid sequences in the germplasm of a breeding population of plants.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: January 28, 2020
    Assignee: Monsanto Technology LLC
    Inventors: Stanton B. Dotson, Fenggao Dong, Frederic Achard, Sam Eathington, Nengbing Tao, Zoe McKiness
  • Patent number: 10544448
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant by the use of direct nucleic acid sequence information. The methods describe the identification and accumulation of preferred nucleic acid sequences in the germplasm of a breeding population of plants.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: January 28, 2020
    Assignee: Monsanto Technology LLC
    Inventors: Stanton B Dotson, Fenggao Dong, Frederic Achard, Sam Eathington, Nengbing Tao, Zoe McKiness
  • Patent number: 10455783
    Abstract: The present invention relates to breeding methods to enhance the germplasm of a plant. The methods describe the identification and accumulation of preferred haplotype genomic regions in the germplasm of breeding populations of maize (Zea mays) and soybean (Glycine max). The invention also relates to maize and soybean plants comprising preferred haplotypes.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: October 29, 2019
    Assignee: Monsanto Technology LLC
    Inventors: Jason Bull, David Butruille, Sam Eathington, Marlin Edwards, Anju Gupta, G. Richard Johnson, Robert Stefan Reiter
  • Publication number: 20190185876
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 20, 2019
    Inventors: Jason Bull, David Butruille, Sam Eathington, Marlin Edwards, Anju Gupta, Richard Johnson, Wayne Kennard, Jennifer Rinehart, Kunsheng Wu
  • Publication number: 20190185875
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 20, 2019
    Inventors: Jason Bull, David Butruille, Sam Eathington, Marlin Edwards, Anju Gupta, Richard Johnson, Wayne Kennard, Jennifer Rinehart, Kunsheng Wu
  • Patent number: 10273498
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: April 30, 2019
    Assignee: Monsanto Technology LLC
    Inventors: Jason Bull, David Butruille, Sam Eathington, Marlin Edwards, Anju Gupta, Richard Johnson, Wayne Kennard, Jennifer Rinehart, Kunsheng Wu
  • Publication number: 20180271042
    Abstract: A method is provided for use in a plant breeding program to generate a population having one or more desired traits. The method includes removing a tissue sample from each of one or more seeds using an automated seed sampler while preserving germination viability of the sampled seeds; analyzing the tissue samples for the presence or absence of a genetic sequence associated with at least one desired trait; based on the analysis of the tissue samples, cultivating plants from the sampled seeds that either possess or lack the genetic sequence associated with the at least one desired trait; creating a parental cross using at least one of the cultivated plants; and selecting seeds from the parental cross and cultivating offspring of the parental cross using the selected seeds.
    Type: Application
    Filed: June 1, 2018
    Publication date: September 27, 2018
    Inventors: David BUTRUILLE, Kevin L. DEPPERMANN, Stanton DOTSON, Sam EATHINGTON, Heather FORBES, Michael W. PETERSEN, Bruce SCHNICKER, John TAMULONIS
  • Patent number: 9986699
    Abstract: Novel methods are provided to facilitate germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds. A method for introgressive hybridization, for example, generally includes removing tissue samples from individual seeds using an automated seed sampler without affecting germination viability of the seeds, and analyzing nucleic acids extracted from the tissue samples for at least one genetic marker. The method then further includes selecting the sampled seeds that possess the at least one genetic marker, cultivating fertile plants from the selected seeds, and crossing the fertile plants with other plants.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: June 5, 2018
    Assignee: Monsanto Technology LLC
    Inventors: Kevin L. Deppermann, Michael W. Petersen, David Butruille, Stanton Dotson, Sam Eathington, Heather Forbes, Bruce Schnicker, John Tamulonis
  • Publication number: 20180004894
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant by the use of direct nucleic acid sequence information. The methods describe the identification and accumulation of preferred nucleic acid sequences in the germplasm of a breeding population of plants.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 4, 2018
    Applicant: Monsanto Technology LLC
    Inventors: Stanton B. DOTSON, Fenggao DONG, Frederic ARCHARD, Sam EATHINGTON, Nengbing TAO, Zoe McKINESS f/n/a McCUDDIN
  • Publication number: 20170156276
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Applicant: Monsanto Technology LLC
    Inventors: Jason Bull, David Butruille, Sam Eathington, Marlin Edwards, Anju Gupta, Richard Johnson, Wayne Kennard, Jennifer Rinehart, Kunsheng Wu
  • Patent number: 9605272
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: March 28, 2017
    Assignee: Monsanto Technology LLC
    Inventors: Jason Bull, David Butruille, Sam Eathington, Marlin Edwards, Anju Gupta, Richard Johnson, Wayne Kennard, Jennifer Rinehart, Kunsheng Wu
  • Publication number: 20160098515
    Abstract: The present invention provides breeding methods and compositions to enhance the germplasm of a plant by the use of direct nucleic acid sequence information. The methods describe the identification and accumulation of preferred nucleic acid sequences in the germplasm of a breeding population of plants.
    Type: Application
    Filed: September 17, 2015
    Publication date: April 7, 2016
    Inventors: STANTON B. DOTSON, FENGGAO DONG, FREDERIC ACHARD, SAM EATHINGTON, NENGBING TAO, ZOE MCKINESS f/n/a MCCUDDIN
  • Patent number: 9271455
    Abstract: Polymorphic soybean DNA loci useful for genotyping between at least two varieties of soybean. Sequences of the loci are useful for providing the basis for designing primers and probe oligonucleotides for detecting polymorphisms in soybean DNA. Polymorphisms are useful for genotyping applications in soybean. The polymorphic markers are useful to establish marker/trait associations, e.g. in linkage disequilibrium mapping and association studies, positional cloning and transgenic applications, marker-aided breeding and marker-assisted selection, hybrid prediction and identity by descent studies. The polymorphic markers are also useful in mapping libraries of DNA clones, e.g. for soybean QTLs and genes linked to polymorphisms.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: March 1, 2016
    Assignee: Monsanto Technology LLC
    Inventors: Kunsheng Wu, John LeDeaux, David Butruille, Anju Gupta, Richard Johnson, Sam Eathington, Jason Bull, Marlin Edwards, Paul McLaird
  • Publication number: 20150355205
    Abstract: A seed sampling system is provided having an automated seed loading assembly including a seed bin and being operable to singulate seeds from a plurality of seeds within the seed bin. The system also includes an automated seed sampling assembly operable to remove tissue samples from the singulated seeds, and an automated seed transport assembly operable to transfer the singulated seeds from the seed loading assembly to the seed sampling assembly. The seed transport assembly includes multiple retention members. Each of the retention members is movable relative to the seed loading assembly and to the seed sampling assembly. The seed transport assembly is operable to position one of the multiple retention members adjacent to the seed loading assembly for engaging one of the singulated seeds, while positioning another of the retention members adjacent to the seed sampling assembly for presenting another of the singulated seeds to the seed sampling assembly.
    Type: Application
    Filed: April 13, 2015
    Publication date: December 10, 2015
    Inventors: Kevin L. Deppermann, Michael W. Petersen, Allen N. Ondes, David W. Finley, William M. Fischer, John M. Jensen, David Butruille, Stanton Dotson, Sam Eathington, Heather M. Forbes, Bruce Schnicker, John Tamulonis
  • Publication number: 20150164011
    Abstract: Novel methods are provided to facilitate germplasm improvement activities through the use of high throughput, nondestructive sampling of seeds. A method for introgressive hybridization, for example, generally includes removing tissue samples from individual seeds using an automated seed sampler without affecting germination viability of the seeds, and analyzing nucleic acids extracted from the tissue samples for at least one genetic marker. The method then further includes selecting the sampled seeds that possess the at least one genetic marker, cultivating fertile plants from the selected seeds, and crossing the fertile plants with other plants.
    Type: Application
    Filed: February 23, 2015
    Publication date: June 18, 2015
    Inventors: Kevin L. Deppermann, Michael W. Petersen, David Butruille, Stanton Dotson, Sam Eathington, Heather Forbes, Bruce Schnicker, John Tamulonis