Patents by Inventor Sam MASSIH

Sam MASSIH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11635840
    Abstract: In a method for determining touch applied to an electronic device, ultrasonic signals are emitted from an ultrasonic sensor. A plurality of reflected ultrasonic signals from a finger interacting with the ultrasonic sensor is captured. A first data based at least in part on a first reflected ultrasonic signal of the plurality of reflected ultrasonic signals is compared with a second data based at least in part on a second reflected ultrasonic signal of the plurality of reflected ultrasonic signals. A signal change due to a change in a feature of the finger during a touch interaction with the ultrasonic sensor is determined based on differences between the first data and the second data. A touch applied by the finger to the electronic device is determined based at least in part on the signal change due to the change in the feature of the finger.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: April 25, 2023
    Assignee: InvenSense, Inc.
    Inventors: Eitan Medina, Behrooz Abdi, Sam Massih, Romain Fayolle, Hao-Yen Tang
  • Publication number: 20210397290
    Abstract: In a method for determining force applied to an ultrasonic sensor, ultrasonic signals are emitted from an ultrasonic sensor. A plurality of reflected ultrasonic signals from a finger interacting with the ultrasonic sensor is captured. A first data based at least in part on a first reflected ultrasonic signal of the plurality of reflected ultrasonic signals is compared with a second data based at least in part on a second reflected ultrasonic signal of the plurality of reflected ultrasonic signals. A deformation of the finger during interaction with the ultrasonic sensor is determined based on differences between the first data based at least in part on the first reflected ultrasonic signal and the second data based at least in part on the second reflected ultrasonic signal. A force applied by the finger to the ultrasonic sensor is determined based at least in part on the deformation.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 23, 2021
    Applicant: InvenSense, Inc.
    Inventors: Eitan MEDINA, Behrooz ABDI, Sam MASSIH, Romain FAYOLLE, Hao-Yen TANG
  • Patent number: 11048358
    Abstract: In a method for determining touch applied to an electronic device, ultrasonic signals are emitted from an ultrasonic sensor. A plurality of reflected ultrasonic signals from a finger interacting with the ultrasonic sensor is captured. A first data based at least in part on a first reflected ultrasonic signal of the plurality of reflected ultrasonic signals is compared with a second data based at least in part on a second reflected ultrasonic signal of the plurality of reflected ultrasonic signals. A signal change due to a deformation of the finger during a touch interaction with the ultrasonic sensor is determined based on differences between the first data and the second data. A touch applied by the finger to the electronic device is determined based at least in part on the signal change due to the deformation.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: June 29, 2021
    Assignee: InvenSense, Inc.
    Inventors: Eitan Medina, Behrooz Abdi, Sam Massih, Romain Fayolle, Hao-Yen Tang
  • Publication number: 20200183536
    Abstract: In a method for determining force applied to an ultrasonic sensor, ultrasonic signals are emitted from an ultrasonic sensor. A plurality of reflected ultrasonic signals from a finger interacting with the ultrasonic sensor is captured. A first data based at least in part on a first reflected ultrasonic signal of the plurality of reflected ultrasonic signals is compared with a second data based at least in part on a second reflected ultrasonic signal of the plurality of reflected ultrasonic signals. A deformation of the finger during interaction with the ultrasonic sensor is determined based on differences between the first data based at least in part on the first reflected ultrasonic signal and the second data based at least in part on the second reflected ultrasonic signal. A force applied by the finger to the ultrasonic sensor is determined based at least in part on the deformation.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Applicant: InvenSense, Inc.
    Inventors: Eitan MEDINA, Behrooz ABDI, Sam MASSIH, Romain FAYOLLE, Hao-Yen TANG
  • Patent number: 10564778
    Abstract: In a method for determining force applied to an ultrasonic sensor, ultrasonic signals are emitted from an ultrasonic sensor. A plurality of reflected ultrasonic signals from a finger interacting with the ultrasonic sensor is captured. A first data based at least in part on a first reflected ultrasonic signal of the plurality of reflected ultrasonic signals is compared with a second data based at least in part on a second reflected ultrasonic signal of the plurality of reflected ultrasonic signals. A deformation of the finger during interaction with the ultrasonic sensor is determined based on differences between the first data based at least in part on the first reflected ultrasonic signal and the second data based at least in part on the second reflected ultrasonic signal. A force applied by the finger to the ultrasonic sensor is determined based at least in part on the deformation.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: February 18, 2020
    Assignee: InvenSense, Inc.
    Inventors: Eitan Medina, Behrooz Abdi, Sam Massih, Romain Fayolle, Hao-Yen Tang
  • Publication number: 20190250771
    Abstract: In a method for determining force applied to an ultrasonic sensor, ultrasonic signals are emitted from an ultrasonic sensor. A plurality of reflected ultrasonic signals from a finger interacting with the ultrasonic sensor is captured. A first data based at least in part on a first reflected ultrasonic signal of the plurality of reflected ultrasonic signals is compared with a second data based at least in part on a second reflected ultrasonic signal of the plurality of reflected ultrasonic signals. A deformation of the finger during interaction with the ultrasonic sensor is determined based on differences between the first data based at least in part on the first reflected ultrasonic signal and the second data based at least in part on the second reflected ultrasonic signal. A force applied by the finger to the ultrasonic sensor is determined based at least in part on the deformation.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Applicant: InvenSense, Inc.
    Inventors: Eitan MEDINA, Behrooz ABDI, Sam MASSIH, Romain FAYOLLE, Hao-Yen TANG
  • Patent number: 10296145
    Abstract: In a method for determining force applied to an ultrasonic sensor, ultrasonic signals are emitted from an ultrasonic sensor. A plurality of reflected ultrasonic signals from a finger interacting with the ultrasonic sensor is captured. A first data based at least in part on a first reflected ultrasonic signal of the plurality of reflected ultrasonic signals is compared with a second data based at least in part on a second reflected ultrasonic signal of the plurality of reflected ultrasonic signals. A deformation of the finger during interaction with the ultrasonic sensor is determined based on differences between the first data based at least in part on the first reflected ultrasonic signal and the second data based at least in part on the second reflected ultrasonic signal. A force applied by the finger to the ultrasonic sensor is determined based at least in part on the deformation.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: May 21, 2019
    Assignee: Invensense, Inc.
    Inventors: Eitan Medina, Behrooz Abdi, Sam Massih, Romain Fayolle, Hao-Yen Tang
  • Publication number: 20170255338
    Abstract: In a method for determining force applied to an ultrasonic sensor, ultrasonic signals are emitted from an ultrasonic sensor. A plurality of reflected ultrasonic signals from a finger interacting with the ultrasonic sensor is captured. A first data based at least in part on a first reflected ultrasonic signal of the plurality of reflected ultrasonic signals is compared with a second data based at least in part on a second reflected ultrasonic signal of the plurality of reflected ultrasonic signals. A deformation of the finger during interaction with the ultrasonic sensor is determined based on differences between the first data based at least in part on the first reflected ultrasonic signal and the second data based at least in part on the second reflected ultrasonic signal. A force applied by the finger to the ultrasonic sensor is determined based at least in part on the deformation.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Applicant: InvenSense, Inc.
    Inventors: Eitan MEDINA, Behrooz ABDI, Sam MASSIH, Romain FAYOLLE, Hao-Yen TANG