Patents by Inventor Sam-Ryong Park

Sam-Ryong Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9170018
    Abstract: The present invention provides a top-feeding double-swirl type gasifier: a feed line through which pulverized coal is supplied by nitrogen; a distributor for dividing the pulverized coal supplied; a plurality of burner nozzles for supplying the pulverized coal, divided in the distributor, and an oxidizer; a pressure reactor in which the pulverized coal and the oxidizer react with each other to produce a flow of synthesis gas; and a swirl generator for imparting a swirling force to the oxidizer which is fed into the pressure reactor, the gasifier further comprising a slag cooling and storing container placed beneath the pressure reactor. Each of the burner nozzles consists of a triple tube having a circular cross section. The pulverized coal and carrier gas are supplied to the most central region of the burner nozzle, and an oxidizer is supplied to an annular region 34 surrounding the central region.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 27, 2015
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Jin Wook Lee, Seok Woo Chung, Young Don Yoo, Yongseung Yun, Sam Ryong Park, Gyoo Tae Kim, Yong Il Lee
  • Patent number: 8975462
    Abstract: The present invention relates to a method for manufacturing aromatic products (benzene/toluene/xylene) and olefinic products from an aromatic-compound-containing oil fraction, whereby it is possible to substitute naphtha as a feedstock for aromatic production and so make stable supply and demand, and it is possible to substantially increase the yield of high-added-value olefinic and high-added-value aromatic components, by providing a method for manufacturing olefinic and aromatic products from light cycle oil comprising a hydrogen-processing reaction step, a catalytic cracking step, an separation step and a transalkylation step, and optionally also comprising a recirculation step.
    Type: Grant
    Filed: November 25, 2010
    Date of Patent: March 10, 2015
    Assignee: SK Innovation Co., Ltd.
    Inventors: Hong Chan Kim, Sung Won Kim, Yong Seung Kim, Sang Hun Oh, Soo Kil Kang, Hyuck Jae Lee, Cheol Joong Kim, Gyung Rok Kim, Sun Choi, Sam Ryong Park
  • Patent number: 8933283
    Abstract: This invention relates to a petroleum refining method for producing high value-added clean petroleum products and aromatics (Benzene/Toluene/Xylene) together, by which low pollution petroleum products including liquefied petroleum gas or low-sulfur gas oil and aromatics can be efficiently produced together from a fluid catalytic cracked oil fraction.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 13, 2015
    Assignee: SK Innovation Co., Ltd.
    Inventors: Cheol Joong Kim, Jae Wook Ryu, Kyeong Hak Seong, Byoung Mu Chang, Byeung Soo Lim, Jong Hyung Lee, Kyung Seok Noh, Hyuck Jae Lee, Sam Ryong Park, Sun Choi, Seung Hoon Oh, Yong Seung Kim, Gyung Rok Kim
  • Patent number: 8728782
    Abstract: Disclosed is a method of converting butyric acid contained in a fermentation broth into biofuel. This chemical conversion method includes separating biohydrogen from gases generated in the course of production of butyric acid through fermentation of carbohydrate, extracting butyric acid from the broth using an insoluble solvent, esterifying butyric acid thus producing butylbutyrate, and hydrogenolyzing all or part of butylbutyrate, thus obtaining butanol. Thereby, biobutanol can be efficiently and economically produced, and butylbutyrate, which has oxidation stability superior to that of conventional biodiesel (fatty acid methyl ester) and is thus regarded as novel biofuel, can be produced together.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: May 20, 2014
    Assignees: SK Innovation Co., Ltd., Korea Institute of Science and Technology
    Inventors: Sin Young Kang, Cher Hee Park, Young Seek Yoon, In Ho Cho, Hyung Woong Ahn, Sam Ryong Park, Jong Hee Song, Seong Ho Lee, Byoung In Sang, Young Woong Suh, Young Soon Um, Sun Mi Lee
  • Patent number: 8691076
    Abstract: Disclosed is a method of manufacturing high-quality naphthenic base oil by subjecting, as a feedstock, light cycle oil (LCO) and slurry oil (SLO) obtained through fluidized catalytic cracking (FCC) to hydrotreating and dewaxing.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: April 8, 2014
    Assignee: SK Lubricants Co., Ltd.
    Inventors: Chang Kuk Kim, Jee Sun Shin, Ju Hyun Lee, Sam Ryong Park, Gyung Rok Kim, Yoon Mang Hwang
  • Publication number: 20130326953
    Abstract: Provided is a gasification method of a carbon-containing material, the method including: (a) reacting a carbon-containing material to be treated under the presence of a catalyst with steam to produce a syngas containing hydrogen, carbon monoxide and carbon dioxide; (b) generating a carbon dioxide rich gas by introducing a portion of the syngas that has produced in step (a) into a combustion process, and/or separating hydrogen and carbon monoxide from the syngas produced in step (a); and (c) recycling, to step (a), the carbon dioxide rich gas that has been produced in step (b). By the method, the necessity of separating or collecting and storing carbon dioxide for reducing carbon dioxide is eliminated to minimize costs for constructing a special device and facility for the separation or collecting and storage of the carbon dioxide.
    Type: Application
    Filed: December 7, 2011
    Publication date: December 12, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Jin Hong Kim, Ja Hyun Yang, IL Yong Jeong, Dae Hee Cho, Jeong Mook Kim, Ok Youn Kim, Jong Chan Lee, Gyoo Tae Kim, Joo Won Park, Sam Ryong Park, Sun Choi, Seung Hoon Oh, Hyun Min Shim
  • Patent number: 8585889
    Abstract: A method of manufacturing high-quality naphthenic base oils comprising a high aromatic content and a large amount of impurities with a boiling point higher than that of gasoline. High-quality naphthenic base oil may be manufactured from light cycle oil (LCO) and slurry oil (SLO), which are inexpensive, and have a high aromatic content, a large amount of impurities, and which are effluents of a fluidized catalytic cracking (FCC) unit. The method also relates to the pretreatment process of a feedstock, where the amounts of impurities (sulfur, nitrogen, polynuclear aromatic compounds and various metals components) in the feedstock are reduced.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: November 19, 2013
    Assignee: SK Lubricants Co., Ltd.
    Inventors: Chang Kuk Kim, Jee Sun Shin, Kyung Seok Noh, Ju Hyun Lee, Byoung In Lee, Seung Woo Lee, Do Woan Kim, Sam Ryong Park, Seong Han Song, Gyung Rok Kim, Yoon Mang Hwang
  • Publication number: 20130253242
    Abstract: The present invention relates to a method for manufacturing aromatic products (benzene/toluene/xylene) and olefinic products from an aromatic-compound-containing oil fraction, whereby it is possible to substitute naphtha as a feedstock for aromatic production and so make stable supply and demand, and it is possible to substantially increase the yield of high-added-value olefinic and high-added-value aromatic components, by providing a method for manufacturing olefinic and aromatic products from light cycle oil comprising a hydrogen-processing reaction step, a catalytic cracking step, an separation step and a transalkylation step, and optionally also comprising a recirculation step.
    Type: Application
    Filed: November 25, 2010
    Publication date: September 26, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Hong Chan Kim, Sung Won Kim, Yong Seung Kim, Sang Hun Oh, Soo Kil Kang, Hyuck Jae Lee, Cheol Joong Kim, Gyung Rok Kim, Sun Choi, Sam Ryong Park
  • Publication number: 20120266538
    Abstract: The present invention provides a top-feeding double-swirl type gasifier: a feed line through which pulverized coal is supplied by nitrogen; a distributor for dividing the pulverized coal supplied; a plurality of burner nozzles for supplying the pulverized coal, divided in the distributor, and an oxidizer; a pressure reactor in which the pulverized coal and the oxidizer react with each other to produce a flow of synthesis gas; and a swirl generator for imparting a swirling force to the oxidizer which is fed into the pressure reactor, the gasifier further comprising a slag cooling and storing container placed beneath the pressure reactor. Each of the burner nozzles consists of a triple tube having a circular cross section. The pulverized coal and carrier gas are supplied to the most central region of the burner nozzle, and an oxidizer is supplied to an annular region 34 surrounding the central region.
    Type: Application
    Filed: December 10, 2010
    Publication date: October 25, 2012
    Inventors: Jin Wook Lee, Seok Woo Chung, Young Don Yoo, Yongseung Yun, Sam Ryong Park, Gyoo Tae Kim, Yong Il Lee
  • Publication number: 20110294176
    Abstract: Disclosed is a method of converting butyric acid contained in a fermentation broth into biofuel. This chemical conversion method includes separating biohydrogen from gases generated in the course of production of butyric acid through fermentation of carbohydrate, extracting butyric acid from the broth using an insoluble solvent, esterifying butyric acid thus producing butylbutyrate, and hydrogenolyzing all or part of butylbutyrate, thus obtaining butanol. Thereby, biobutanol can be efficiently and economically produced, and butylbutyrate, which has oxidation stability superior to that of conventional biodiesel (fatty acid methyl ester) and is thus regarded as novel biofuel, can be produced together.
    Type: Application
    Filed: March 27, 2009
    Publication date: December 1, 2011
    Inventors: Sin Young Kang, Cher Hee Park, Young Seek Yoon, In Ho Cho, Hyung Woong Ahn, Sam Ryong Park, Jong Hee Song, Seong Ho Lee, Byoung In Sang, Young Woong Suh, Young Soon Um, Sun Mi Lee
  • Publication number: 20110288354
    Abstract: This invention relates to a petroleum refining method for producing high value-added clean petroleum products and aromatics (Benzene/Toluene/Xylene) together, by which low pollution petroleum products including liquefied petroleum gas or low-sulfur gas oil and aromatics can be efficiently produced together from a fluid catalytic cracked oil fraction.
    Type: Application
    Filed: November 26, 2008
    Publication date: November 24, 2011
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Cheol Joong Kim, Jae Wook Ryu, Kyeong Hak Seong, Byoung Mu Chang, Byeung Soo Lim, Jong Hyung Lee, Kyung Seok Noh, Hyuck Jae Lee, Sam Ryong Park, Sun Choi, Seung Hoon Oh, Yong Seung Kim, Gyung Rok Kim
  • Publication number: 20110089080
    Abstract: A method of manufacturing high-quality naphthenic base oils comprising a high aromatic content and a large amount of impurities with a boiling point higher than that of gasoline. High-quality naphthenic base oil may be manufactured from light cycle oil (LCO) and slurry oil (SLO), which are inexpensive, and have a high aromatic content, a large amount of impurities, and which are effluents of a fluidized catalytic cracking (FCC) unit. The method also relates to the pretreatment process of a feedstock, where the amounts of impurities (sulfur, nitrogen, polynuclear aromatic compounds and various metals components) in the feedstock are reduced.
    Type: Application
    Filed: August 7, 2008
    Publication date: April 21, 2011
    Applicant: SK Lubricants Co., Ltd.
    Inventors: Chang Kuk Kim, Jee Sun Shin, Kyung Seok Noh, Ju Hyun Lee, Byoung In Lee, Seung Woo Lee, Do Woan Kim, Sam Ryong Park, Seong Han Song, Gyung Rok Kim, Yoon Mang Hwang
  • Publication number: 20110005972
    Abstract: Disclosed is a method of manufacturing high-quality naphthenic base oil by subjecting, as a feedstock, light cycle oil (LCO) and slurry oil (SLO) obtained through fluidized catalytic cracking (FCC) to hydrotreating and dewaxing.
    Type: Application
    Filed: November 21, 2007
    Publication date: January 13, 2011
    Applicant: SK LUBRICANTS CO., LTD.
    Inventors: Chang Kuk Kim, Jee Sun Shin, Ju Hyun Lee, Sam Ryong Park, Gyung Rok Kim, Yoon Mang Hwang
  • Publication number: 20100240932
    Abstract: Disclosed is a process for preparing dimethyl ether, including a) reacting methanol containing 0-80 mol % of water in the presence of a dehydration catalyst, b) transferring the reaction product into a single separation column, thus separating dimethyl ether, water, and unreacted methanol, c) withdrawing dimethyl ether and withdrawing unreacted methanol from the sidestream of the single separation column, and d) recyling the unreacted methanol to the a) reacting the methanol. Dimethyl ether may be prepared from water-containing methanol, and the separation and withdrawal of dimethyl ether, water, and unreacted methanol may be realized using a single column, thus reducing the investment cost and the operating cost.
    Type: Application
    Filed: August 30, 2007
    Publication date: September 23, 2010
    Inventors: Sam Ryong Park, Gyung Rok Kim, Gyoo Tae Kim, Seung Hoon Oh, Cheol Joong Kim, Hyun Chul Choi, Kyung Seok Noh
  • Publication number: 20100193400
    Abstract: Disclosed herein is a method of producing feedstock of high-quality lube based oil by producing coker gas oil (CGO) from vacuum residue (VR) or a mixture (VR/AR) of atmospheric residue (AR) and vacuum residue (VR), performing a hydrotreating process and a hydrocracking process by mixing the coker gas oil (CGO) with vacuum gas oil (VGO) to form unconverted oil (UCO), and then recycling the unconverted oil. The method of producing feedstock of high-quality lube based oil is advantageous in that feedstock of high-quality lube based oil can be more economically and efficiently produced using cheap coker gas oil (CGO), which is hard to treat.
    Type: Application
    Filed: April 18, 2008
    Publication date: August 5, 2010
    Applicant: SK LUBRICANTS CO., LTD.
    Inventors: Gyung Rok Kim, Chang Kuk Kim, Jae Wook Ryu, Jee Sun Shin, Sam Ryong Park
  • Publication number: 20090050524
    Abstract: The present invention relates to a method of producing a feedstock for high-quality lube base oil from unconverted oil (UCO) obtained from fuel oil hydrocracking, and more particularly to a method of producing a feedstock for high-quality lube base oil by treating vacuum gas oil (VGO) or a mixture of vacuum gas oil (VGO) with coker gas oil (CGO) or deasphalted oil (NAO) as a feedstock in a hydrotreating unit and a first hydrocracking unit and recycling the resulting unconverted oil (UCO) through a second hydrocracking unit.
    Type: Application
    Filed: May 30, 2008
    Publication date: February 26, 2009
    Applicant: SK Energy Co., Ltd.
    Inventors: Gyung Rok Kim, Chang Kuk Kim, In Chan Kim, Jee Sun Shin, Sam Ryong Park
  • Publication number: 20070149432
    Abstract: Disclosed is a cleaning agent for heater tubes, which is capable of eliminating deposits such as soot particulates in tubes installed in industrial heaters that typically use oil, coal or gas. The cleaning agent of the present invention is prepared by formulating a chemical composition comprising ammonium nitrate into pellets. Also, the present invention discloses a method of cleaning heater tubes using the cleaning agent. When being utilized for cleaning the heater tubes, the cleaning agent can improve mechanical and chemical cleaning effects, thus shortening of working time and reducing a required amount of the chemical composition, as well as preventing rapid evaporation of the chemical composition, thus increasing cleaning effect. In addition, the cleaning agent can eliminate the cementing effect of sulfur oxides or vanadic oxides in the heater tubes and thus control stably emission of NOx, by selectively containing other additives including magnesium and urea.
    Type: Application
    Filed: February 20, 2007
    Publication date: June 28, 2007
    Inventors: Jeon-Keun Oh, Wha-Sik Min, Sam-Ryong Park, Gi-Won Park
  • Patent number: 7189289
    Abstract: Disclosed is a cleaning agent for heater tubes, which is capable of eliminating deposits such as soot particulates in tubes installed in industrial heaters that typically use oil, coal or gas. The cleaning agent of the present invention is prepared by formulating a chemical composition comprising ammonium nitrate into pellets. Also, the present invention discloses a method of cleaning heater tubes using the cleaning agent. When being utilized for cleaning the heater tubes, the cleaning agent can improve mechanical and chemical cleaning effects, thus shortening of working time and reducing a required amount of the chemical composition, as well as preventing rapid evaporation of the chemical composition, thus increasing cleaning effect. In addition, the cleaning agent can eliminate the cementing effect of sulfur oxides or vanadic oxides in the heater tubes and thus control stably emission of NOx, by selectively containing other additives including magnesium and urea.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: March 13, 2007
    Assignee: SK Corporation
    Inventors: Jeon-Keun Oh, Wha-Sik Min, Sam-Ryong Park, Gi-Won Park
  • Publication number: 20050143279
    Abstract: Disclosed is a cleaning agent for heater tubes, which is capable of eliminating deposits such as soot particulates in tubes installed in industrial heaters that typically use oil, coal or gas. The cleaning agent of the present invention is prepared by formulating a chemical composition comprising ammonium nitrate into pellets. Also, the present invention discloses a method of cleaning heater tubes using the cleaning agent. When being utilized for cleaning the heater tubes, the cleaning agent can improve mechanical and chemical cleaning effects, thus shortening of working time and reducing a required amount of the chemical composition, as well as preventing rapid evaporation of the chemical composition, thus increasing cleaning effect. In addition, the cleaning agent can eliminate the cementing effect of sulfur oxides or vanadic oxides in the heater tubes and thus control stably emission of NOx, by selectively containing other additives including magnesium and urea.
    Type: Application
    Filed: February 6, 2003
    Publication date: June 30, 2005
    Inventors: Jeon-Keun Oh, Wha-Sim Min, Sam-Ryong Park, Gi-Won Park
  • Patent number: 6485578
    Abstract: Disclosed is a chemical cleaning process for removing fouling from process lines of oil refining or petrochemical plants. The process lines are in an on-line state and a chemical cleaning agent is circulated through the process lines to remove the fouling. It can effectively recover the thermal efficiency in oil refining processes or petrochemical processes within a short period of time, so that significant energy consumption is reduced. Furthermore, the chemical cleaning process requires a shorter cleaning period and therefore allows for a longer operating time. It can also dislodge fouling without opening heat exchangers or other equipment thereby preventing the release of VOCs. As a result, environmental pollution is not generated. The present invention is also ecconomically favorable as it extends the time between periodic maintenance.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: November 26, 2002
    Assignee: SK Corporation
    Inventors: Sam-Ryong Park, Young-Kyoung Ahn, Sung-Gu Oh, Ki-Hyun Lee, Sung-Joong Kim