Patents by Inventor Sam Tuck

Sam Tuck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240066519
    Abstract: A system and method for target material retrieval and processing, the system comprising: an adaptor configured to interface with a capture region of a capture substrate for capturing particles in single-particle format within a set of wells, wherein the adaptor comprises a first region configured to interface with the capture region, a second region, and a cavity extending from the first region to the second region; and a support structure coupled to the adaptor and providing a set of operation modes for movement of the adaptor relative to the capture substrate. The system enables methods for magnetic and/or other force-based methods of retrieval of target material (e.g., derived from single cells).
    Type: Application
    Filed: October 19, 2023
    Publication date: February 29, 2024
    Inventors: Kalyan Handique, Swati Ranade, Vishal Sharma, Austin Payne, Sam Tuck
  • Patent number: 11865542
    Abstract: A system and method, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity and a fluid delivery module including a fluid pathway through which fluid flow is controlled along a fluid path in a direction parallel to the broad face of the substrate; and wherein the method includes: generating a set of genetic complexes within individual wells of the array of wells.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: January 9, 2024
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck
  • Patent number: 11833507
    Abstract: A system and method for target material retrieval and processing, the system comprising: an adaptor configured to interface with a capture region of a capture substrate for capturing particles in single-particle format within a set of wells, wherein the adaptor comprises a first region configured to interface with the capture region, a second region, and a cavity extending from the first region to the second region; and a support structure coupled to the adaptor and providing a set of operation modes for movement of the adaptor relative to the capture substrate. The system enables methods for magnetic and/or other force-based methods of retrieval of target material (e.g., derived from single cells).
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: December 5, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Swati Ranade, Vishal Sharma, Austin Payne, Sam Tuck
  • Publication number: 20230037836
    Abstract: A system and method for isolating and analyzing single cells, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity configured to capture cells in one of a single-cell format and single-cluster format, and a fluid delivery module including a fluid reservoir superior to the array of wells through which fluid flow is controlled along a fluid path in a direction parallel to the broad face of the substrate; and wherein the method includes: capturing a population of non-cell particles into the array of wells in single-particle format; releasing, from the non-cell particles, a set of probes into the array of wells; capturing a population of cells into the array of wells in single-cell format; releasing biomolecules from each captured cell into the array of wells; and generating a set of genetic complexes comprising the biomolecules associated with a single captured cell and a subset of probes within individual wells of the array of wells.
    Type: Application
    Filed: October 13, 2022
    Publication date: February 9, 2023
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck
  • Patent number: 11504714
    Abstract: A system and method for isolating and analyzing single cells, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity configured to capture cells in one of a single-cell format and single-cluster format, and a fluid delivery module including a fluid reservoir superior to the array of wells through which fluid flow is controlled along a fluid path in a direction parallel to the broad face of the substrate; and wherein the method includes: capturing a population of non-cell particles into the array of wells in single-particle format; releasing, from the non-cell particles, a set of probes into the array of wells; capturing a population of cells into the array of wells in single-cell format; releasing biomolecules from each captured cell into the array of wells; and generating a set of genetic complexes comprising the biomolecules associated with a single captured cell and a subset of probes within individual wells of the array of wells.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: November 22, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck
  • Patent number: 11358146
    Abstract: A system and method for isolating and analyzing single cells, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity configured to capture cells in one of a single-cell format and single-cluster format, and a fluid delivery module including a fluid reservoir through which fluid flow is controlled along a fluid path; and wherein the method includes: capturing a population of particles into the array of wells in single-particle format; releasing, from the particles, a set of probes into the array of wells; capturing a population of cells into the array of wells in single-cell format; releasing biomolecules from each captured cell into the array of wells; and generating a set of genetic complexes comprising the biomolecules associated with a single captured cell and a subset of probes within individual wells of the array of wells.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: June 14, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck
  • Publication number: 20220152606
    Abstract: A system and method for target material retrieval and processing, the system comprising: an adaptor configured to interface with a capture region of a capture substrate for capturing particles in single-particle format within a set of wells, wherein the adaptor comprises a first region configured to interface with the capture region, a second region, and a cavity extending from the first region to the second region; and a support structure coupled to the adaptor and providing a set of operation modes for movement of the adaptor relative to the capture substrate. The system enables methods for magnetic and/or other force-based methods of retrieval of target material (e.g., derived from single cells).
    Type: Application
    Filed: February 1, 2022
    Publication date: May 19, 2022
    Inventors: Kalyan Handique, Swati Ranade, Vishal Sharma, Austin Payne, Sam Tuck
  • Patent number: 11273439
    Abstract: A system and method for target material retrieval and processing, the system comprising: an adaptor configured to interface with a capture region of a capture substrate for capturing particles in single-particle format within a set of wells, wherein the adaptor comprises a first region configured to interface with the capture region, a second region, and a cavity extending from the first region to the second region; and a support structure coupled to the adaptor and providing a set of operation modes for movement of the adaptor relative to the capture substrate. The system enables methods for magnetic and/or other force-based methods of retrieval of target material (e.g., derived from single cells).
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: March 15, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Swati Ranade, Vishal Sharma, Austin Payne, Sam Tuck
  • Publication number: 20210283608
    Abstract: A system and method for isolating and analyzing single cells, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity configured to capture cells in one of a single-cell format and single-cluster format, and a fluid delivery module including a fluid reservoir superior to the array of wells through which fluid flow is controlled along a fluid path in a direction parallel to the broad face of the substrate; and wherein the method includes: capturing a population of non-cell particles into the array of wells in single-particle format; releasing, from the non-cell particles, a set of probes into the array of wells; capturing a population of cells into the array of wells in single-cell format; releasing biomolecules from each captured cell into the array of wells; and generating a set of genetic complexes comprising the biomolecules associated with a single captured cell and a subset of probes within individual wells of the array of wells.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck
  • Publication number: 20200353459
    Abstract: A system and method for target material retrieval and processing, the system comprising: an adaptor configured to interface with a capture region of a capture substrate for capturing particles in single-particle format within a set of wells, wherein the adaptor comprises a first region configured to interface with the capture region, a second region, and a cavity extending from the first region to the second region; and a support structure coupled to the adaptor and providing a set of operation modes for movement of the adaptor relative to the capture substrate. The system enables methods for magnetic and/or other force-based methods of retrieval of target material (e.g., derived from single cells).
    Type: Application
    Filed: June 19, 2020
    Publication date: November 12, 2020
    Inventors: Kalyan Handique, Swati Ranade, Vishal Sharma, Austin Payne, Sam Tuck
  • Publication number: 20200230604
    Abstract: A system and method for isolating and analyzing single cells, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity configured to capture cells in one of a single-cell format and single-cluster format, and a fluid delivery module including a fluid reservoir superior to the array of wells through which fluid flow is controlled along a fluid path in a direction parallel to the broad face of the substrate; and wherein the method includes: capturing a population of non-cell particles into the array of wells in single-particle format; releasing, from the non-cell particles, a set of probes into the array of wells; capturing a population of cells into the array of wells in single-cell format; releasing biomolecules from each captured cell into the array of wells; and generating a set of genetic complexes comprising the biomolecules associated with a single captured cell and a subset of probes within individual wells of the array of wells.
    Type: Application
    Filed: February 13, 2020
    Publication date: July 23, 2020
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck
  • Patent number: 10391492
    Abstract: A system and method for isolating and analyzing single cells, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity configured to capture cells in one of a single-cell format and single-cluster format, and a fluid delivery module including a fluid reservoir superior to the array of wells through which fluid flow is controlled along a fluid path in a direction parallel to the broad face of the substrate; and wherein the method includes: distributing a population of cells and a population of non-cell particles across the array of wells through the fluid reservoir to increase capture efficiency of individual cell-particle pairs within the array of wells, and processing the captured cell-particle pairs at the set of wells.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: August 27, 2019
    Assignee: Celsee Diagnostics, Inc.
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck
  • Publication number: 20190064168
    Abstract: A system and method for isolating and analyzing single cells, wherein the system includes: an array of wells defined at a substrate, each well including an open surface and a well cavity configured to capture cells in one of a single-cell format and single-cluster format, and a fluid delivery module including a fluid reservoir superior to the array of wells through which fluid flow is controlled along a fluid path in a direction parallel to the broad face of the substrate; and wherein the method includes: distributing a population of cells and a population of non-cell particles across the array of wells through the fluid reservoir to increase capture efficiency of individual cell-particle pairs within the array of wells, and processing the captured cell-particle pairs at the set of wells.
    Type: Application
    Filed: August 28, 2018
    Publication date: February 28, 2019
    Inventors: Kalyan Handique, Vishal Sharma, Priyadarshini Gogoi, William Chow, Austin Payne, Kyle Gleason, Brian Boniface, John Connolly, Sam Tuck