Patents by Inventor Sam Weinberger

Sam Weinberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12058152
    Abstract: A dynamic cloud-based threat detection system is disclosed. The system comprises a network broker that receives communication sessions associated with communication device(s) via a network and selects and sends a predefined number of packets of each communication session to a detection based on packet selection rules. The communication device(s) comprises customer premises equipment (CPE) and/or a mobile communication device. The detection engine receives and inspects the predefined number of packets of each communication session and a governor that initiates blocking of particular communication traffic based on the inspection. The system also comprises a dynamic optimizer that monitors factor(s) and creates and sends updated packet rules to the network broker based on the monitoring. The network broker selects and sends a different predefined number of packets of each of a second plurality of communication sessions to the detection engine for inspection based on the updated packet selection rules.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: August 6, 2024
    Assignee: CYBER ADAPT, INC.
    Inventors: Simon Williams, Michael Weinberger, Sam Stover, David Kramer
  • Patent number: 12039043
    Abstract: A method of dynamic residential threat detection is disclosed. The method includes a packet selection component on a customer premises equipment (CPE) sending a predefined number of packets of each of a plurality of communication sessions to a detection engine based on packet selection rules. The method also includes the detection engine on the CPE receiving and inspecting the predefined number of packets. The method further includes a dynamic optimizing component on the CPE monitoring one or more factors and creating and sending updated packet selection rules based on the monitored factor(s) to the packet selection component. The method additionally comprises the packet selection component sending a different predefined number of packets of each of a second plurality of communication sessions to the detection engine based on the updated packet selection rules. The method further includes the detection engine receiving and inspecting the different predefined number of packets.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: July 16, 2024
    Assignee: CYBER ADAPT, INC.
    Inventors: Simon Williams, Michael Weinberger, Sam Stover, David Kramer
  • Patent number: 11254626
    Abstract: Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C2-rich effluent, a methane-rich effluent, and a nitrogen-rich effluent. Advantageously, in some embodiments the separation is achieved with little or no external refrigeration requirement.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 22, 2022
    Assignee: Lummus Technology LLC
    Inventors: Sam Weinberger, Justin Dwight Edwards, Julian Wolfenbarger, Srinivas R. Vuddagiri, Iraj Isaac Rahmim
  • Patent number: 11242298
    Abstract: The present disclosure provides natural gas and petrochemical processing systems including oxidative coupling of methane reactor systems that integrate process inputs and outputs to cooperatively utilize different inputs and outputs of the various systems in the production of higher hydrocarbons from natural gas and other hydrocarbon feedstocks.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 8, 2022
    Assignee: Lummus Technology LLC
    Inventors: Rahul Iyer, Alex Tkachenko, Sam Weinberger, Erik C. Scher, Guido Radaelli, Hatem Harraz
  • Publication number: 20200354287
    Abstract: The present disclosure provides natural gas and petrochemical processing systems including oxidative coupling of methane reactor systems that integrate process inputs and outputs to cooperatively utilize different inputs and outputs of the various systems in the production of higher hydrocarbons from natural gas and other hydrocarbon feedstocks.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 12, 2020
    Inventors: Rahul Iyer, Alex Tkachenko, Sam Weinberger, Erik C. Scher, Guido Radaelli, Hatem Harraz
  • Publication number: 20200131100
    Abstract: Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions.
    Type: Application
    Filed: June 14, 2019
    Publication date: April 30, 2020
    Inventors: Wayne P. Schammel, Julian Wolfenbarger, Milind Ajinkya, Jon McCarty, Joel M. Cizeron, Sam Weinberger, Justin Dwight Edwards, David Sheridan, Erik C. Scher, Jarod McCormick
  • Publication number: 20200031736
    Abstract: Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C2-rich effluent, a methane-rich effluent, and a nitrogen-rich effluent. Advantageously, in some embodiments the separation is achieved with little or no external refrigeration requirement.
    Type: Application
    Filed: February 27, 2019
    Publication date: January 30, 2020
    Inventors: Sam Weinberger, Justin Dwight Edwards, Julian Wolfenbarger, Srinivas R. Vuddagiri, Iraj Isaac Rahmim
  • Patent number: 9969660
    Abstract: The present disclosure provides natural gas and petrochemical processing systems including oxidative coupling of methane reactor systems that integrate process inputs and outputs to cooperatively utilize different inputs and outputs of the various systems in the production of higher hydrocarbons from natural gas and other hydrocarbon feedstocks.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: May 15, 2018
    Assignee: SILURIA TECHNOLOGIES, INC.
    Inventors: Rahul Iyer, Alex Tkachenko, Sam Weinberger, Erik Scher, Guido Radaelli, Hatem Harraz
  • Publication number: 20170283345
    Abstract: Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions.
    Type: Application
    Filed: November 18, 2016
    Publication date: October 5, 2017
    Inventors: Wayne P. Schammel, Julian Wolfenbarger, Milind Ajinkya, Jon McCarty, Joel M. Cizeron, Sam Weinberger, Justin Dwight Edwards, David Sheridan, Erik C. Scher, Jarod McCormick
  • Publication number: 20170275217
    Abstract: Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C2-rich effluent, a methane-rich effluent, and a nitrogen-rich effluent. Advantageously, in some embodiments the separation is achieved with little or no external refrigeration requirement.
    Type: Application
    Filed: November 17, 2016
    Publication date: September 28, 2017
    Inventors: Sam Weinberger, Justin Dwight Edwards, Julian Wolfenbarger, Srinivas R. Vuddagiri, Iraj Isaac Rahmim
  • Patent number: 9670113
    Abstract: Natural gas and petrochemical processing systems including oxidative coupling of methane reactor systems that integrate process inputs and outputs to cooperatively utilize different inputs and outputs of the various systems in the production of higher hydrocarbons from natural gas and other hydrocarbon feedstocks.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: June 6, 2017
    Assignee: Siluria Technologies, Inc.
    Inventors: Rahul Iyer, Alex Tkachenko, Sam Weinberger, Erik C. Scher, Fabio R. Zurcher, Joel M. Cizeron, Wayne P. Schammel, Joel Gamoras, Dmitry Karshtedt, Greg Nyce
  • Patent number: 9580367
    Abstract: The present disclosure provides natural gas and petrochemical processing systems including oxidative coupling of methane reactor systems that integrate process inputs and outputs to cooperatively utilize different inputs and outputs of the various systems in the production of higher hydrocarbons from natural gas and other hydrocarbon feedstocks.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: February 28, 2017
    Assignee: SILURIA TECHNOLOGIES, INC.
    Inventors: Rahul Iyer, Alex Tkachenko, Sam Weinberger, Erik Scher, Guido Radaelli, Hatem Harraz, Fabio R. Zurcher, Joel Gamoras, Dmitry Karshtedt, Greg Nyce
  • Patent number: 9556086
    Abstract: Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: January 31, 2017
    Assignee: SILURIA TECHNOLOGIES, INC.
    Inventors: Wayne P. Schammel, Julian Wolfenbarger, Milind Ajinkya, Jon McCarty, Joel M. Cizeron, Sam Weinberger, Justin Dwight Edwards, David Sheridan, Erik C. Scher, Jarod McCormick, Fabio R. Zurcher, Alex Tkachenko, Joel Gamoras, Dmitry Karshtedt, Greg Nyce
  • Patent number: 9527784
    Abstract: Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C2-rich effluent, a methane-rich effluent, and a nitrogen-rich effluent. Advantageously, in some embodiments the separation is achieved with little or no external refrigeration requirement.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: December 27, 2016
    Assignee: SILURIA TECHNOLOGIES, INC.
    Inventors: Sam Weinberger, Justin Dwight Edwards, Julian Wolfenbarger, Srinivas R. Vuddagiri, Iraj Isaac Rahmim
  • Patent number: 9469577
    Abstract: Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: October 18, 2016
    Assignee: Siluria Technologies, Inc.
    Inventors: Wayne P. Schammel, Julian Wolfenbarger, Milind Ajinkya, Jon McCarty, Joel M. Cizeron, Sam Weinberger, Justin Dwight Edwards, Dave Sheridan, Erik C. Scher, Jarod McCormick, Fabio R. Zurcher, Alex Tkachenko, Joel Gamoras, Dmitry Karshtedt, Greg Nyce
  • Publication number: 20150368167
    Abstract: Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C2-rich effluent, a methane-rich effluent, and a nitrogen-rich effluent. Advantageously, in some embodiments the separation is achieved with little or no external refrigeration requirement.
    Type: Application
    Filed: August 6, 2015
    Publication date: December 24, 2015
    Inventors: Sam Weinberger, Justin Dwight Edwards, Julian Wolfenbarger, Srinivas R. Vuddagiri, Iraj Isaac Rahmim
  • Publication number: 20150321974
    Abstract: Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions.
    Type: Application
    Filed: July 1, 2015
    Publication date: November 12, 2015
    Inventors: Wayne P. Schammel, Julian Wolfenbarger, Milind Ajinkya, Jon McCarty, Joel M. Cizeron, Sam Weinberger, Justin Dwight Edwards, David Sheridan, Erik C. Scher, Jarod McCormick
  • Patent number: 9133079
    Abstract: Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C2-rich effluent, a methane-rich effluent, and a nitrogen-rich effluent. Advantageously, in some embodiments the separation is achieved with little or no external refrigeration requirement.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: September 15, 2015
    Assignee: Siluria Technologies, Inc.
    Inventors: Sam Weinberger, Justin Dwight Edwards, Julian Wolfenbarger, Srinivas R. Vuddagiri, Iraj Isaac Rahmim
  • Publication number: 20140107385
    Abstract: Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions.
    Type: Application
    Filed: May 23, 2013
    Publication date: April 17, 2014
    Applicant: SILURIA TECHNOLOGIES, INC.
    Inventors: Wayne P. Schammel, Julian Wolfenbarger, Milind Ajinkya, Jon McCarty, Joel M. Cizeron, Sam Weinberger, Justin Dwight Edwards, Dave Sheridan, Erick C. Scher, Jarod McCormick
  • Publication number: 20140018589
    Abstract: The present disclosure provides natural gas and petrochemical processing systems including oxidative coupling of methane reactor systems that integrate process inputs and outputs to cooperatively utilize different inputs and outputs of the various systems in the production of higher hydrocarbons from natural gas and other hydrocarbon feedstocks.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 16, 2014
    Applicant: Siluria Technologies, Inc.
    Inventors: Rahul Iyer, Alex Tkachenko, Sam Weinberger, Erik Scher, Guido Radaelli, Hatem Harraz