Patents by Inventor Saman Farhangdoust

Saman Farhangdoust has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230292622
    Abstract: A metamaterial-based substrate (meta-substrate) for piezoelectric energy harvesters. The design of the meta-substrate combines kirigami and auxetic topologies to create a high-performance platform including preferable mechanical properties of both metamaterial morphable structures. The creative design of the meta-substrate can improve strain-induced vibration applications in structural health monitoring, internet-of-things systems, micro-electromechanical systems, wireless sensor networks, vibration energy harvesters, and other applications whose efficiency is dependent on their deformation performance. The meta-substrate energy harvesting device includes a meta-material substrate comprising an auxetic frame having two kirigami cuts and a piezoelectric element adhered to the auxetic frame by means of a thin layer of elastic glue.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 14, 2023
    Applicant: The Boeing Company
    Inventors: Saman Farhangdoust, Gary E. Georgeson, Jeong-Beom Ihn
  • Patent number: 11700773
    Abstract: A metamaterial-based substrate (meta-substrate) for piezoelectric energy harvesters. The design of the meta-substrate combines kirigami and auxetic topologies to create a high-performance platform including preferable mechanical properties of both metamaterial morphable structures. The creative design of the meta-substrate can improve strain-induced vibration applications in structural health monitoring, internet-of-things systems, micro-electromechanical systems, wireless sensor networks, vibration energy harvesters, and other applications whose efficiency is dependent on their deformation performance. The meta-substrate energy harvesting device includes a meta-material substrate comprising an auxetic frame having two kirigami cuts and a piezoelectric element adhered to the auxetic frame by means of a thin layer of elastic glue.
    Type: Grant
    Filed: June 20, 2020
    Date of Patent: July 11, 2023
    Assignee: The Boeing Company
    Inventors: Saman Farhangdoust, Gary E. Georgeson, Jeong-Beom Ihn
  • Patent number: 11686638
    Abstract: A piezoelectric sensor includes a substrate, a meta-membrane adhered to the substrate, and a piezoelectric element adhered to the meta-membrane. The substrate includes a support frame which laterally surrounds and partly defines a recess and a cover film which overlies and partly defines the recess. The support frame supports the cover film along an entire periphery of the cover film. The meta-membrane is adhered to the cover film of the substrate. In accordance with one embodiment, the meta-membrane has an auxetic bi-axial kirigami honeycomb structure. In accordance with another embodiment, the meta-membrane has an auxetic hexagonal honeycomb structure. The meta-membrane is adhered to the substrate and to the piezoelectric element using elastic glue. In one proposed implementation, the substrate and meta-membrane are made of polycarbonate and the piezoelectric element comprises a piezoelectric substrate made of polyvinylidene fluoride.
    Type: Grant
    Filed: February 12, 2022
    Date of Patent: June 27, 2023
    Assignee: The Boeing Company
    Inventors: Saman Farhangdoust, Gary E. Georgeson
  • Publication number: 20230032821
    Abstract: Wearable ergonomics improvement systems and related methods are disclosed. An example ergonomics improvement system includes a membrane including a first frame having a plurality of first cutouts defining a first pattern. The system includes a sensor coupled to the membrane and includes a second frame having a plurality of second cutouts defining a second pattern. The first pattern is complementary to the second pattern.
    Type: Application
    Filed: July 22, 2021
    Publication date: February 2, 2023
    Inventors: Gary E. Georgeson, Saman Farhangdoust
  • Publication number: 20220373415
    Abstract: A piezoelectric sensor includes a substrate, a meta-membrane adhered to the substrate, and a piezoelectric element adhered to the meta-membrane. The substrate includes a support frame which laterally surrounds and partly defines a recess and a cover film which overlies and partly defines the recess. The support frame supports the cover film along an entire periphery of the cover film. The meta-membrane is adhered to the cover film of the substrate. In accordance with one embodiment, the meta-membrane has an auxetic bi-axial kirigami honeycomb structure. In accordance with another embodiment, the meta-membrane has an auxetic hexagonal honeycomb structure. The meta-membrane is adhered to the substrate and to the piezoelectric element using elastic glue. In one proposed implementation, the substrate and meta-membrane are made of polycarbonate and the piezoelectric element comprises a piezoelectric substrate made of polyvinylidene fluoride.
    Type: Application
    Filed: February 12, 2022
    Publication date: November 24, 2022
    Applicant: The Boeing Company
    Inventors: Saman Farhangdoust, Gary E. Georgeson
  • Publication number: 20210399203
    Abstract: A metamaterial-based substrate (meta-substrate) for piezoelectric energy harvesters. The design of the meta-substrate combines kirigami and auxetic topologies to create a high-performance platform including preferable mechanical properties of both metamaterial morphable structures. The creative design of the meta-substrate can improve strain-induced vibration applications in structural health monitoring, internet-of-things systems, micro-electromechanical systems, wireless sensor networks, vibration energy harvesters, and other applications whose efficiency is dependent on their deformation performance. The meta-substrate energy harvesting device includes a meta-material substrate comprising an auxetic frame having two kirigami cuts and a piezoelectric element adhered to the auxetic frame by means of a thin layer of elastic glue.
    Type: Application
    Filed: June 20, 2020
    Publication date: December 23, 2021
    Applicant: The Boeing Company
    Inventors: Saman Farhangdoust, Gary E. Georgeson, Jeong-Beom Ihn
  • Publication number: 20210399658
    Abstract: A self-powered sensor node includes a printed wiring board connected to a patch. The printed wiring board includes a microcontroller, a transceiver, an antenna, and a power management module connected to supply electric power to the microcontroller. The patch comprises a metamaterial substrate and a piezoelectric element adhered to the metamaterial substrate. The piezoelectric element is connected to the power management module and to the microcontroller. The power management module is configured to store electric power received from the piezoelectric element. The microcontroller is configured to selectively convert electrical signals received from the piezoelectric element into sensor data and then command the transceiver to transmit the sensor data via the antenna. The metamaterial substrate has an auxetic kirigami honeycomb structure.
    Type: Application
    Filed: May 31, 2021
    Publication date: December 23, 2021
    Applicant: The Boeing Company
    Inventors: Saman Farhangdoust, Gary E. Georgeson, Jeong-Beom Ihn