Patents by Inventor Samantha Tan

Samantha Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240274408
    Abstract: Methods and apparatus for performing high energy atomic layer etching are provided herein. Methods include providing a substrate having a material to be etched, exposing a surface of the material to a modification gas to modify the surface and form a modified surface, and exposing the modified surface to an energetic particle to preferentially remove the modified surface relative to an underlying unmodified surface where the energetic particle has an ion energy sufficient to overcome an average surface binding energy of the underlying unmodified surface. The energy of the energetic particle used is very high; in some cases, the power applied to a bias used when exposing the modified surface to the energetic particle is at least 150 eV.
    Type: Application
    Filed: April 3, 2024
    Publication date: August 15, 2024
    Inventors: Wenbing Yang, Samantha Tan, Tamal Mukherjee, Keren Jacobs Kanarik, Yang Pan
  • Patent number: 11823909
    Abstract: Selective deposition of a sacrificial material on a semiconductor substrate, the substrate having a surface with a plurality of regions of substrate materials having different selectivities for the sacrificial material, may be conducted such that substantial deposition of the sacrificial material occurs on a first region of the substrate surface, and no substantial deposition occurs on a second region of the substrate surface. Deposition of a non-sacrificial material may then be conducted on the substrate, such that substantial deposition of the non-sacrificial material occurs on the second region and no substantial deposition of the non-sacrificial material occurs on the first region. The sacrificial material may then be removed such that net deposition of the non-sacrificial material occurs substantially only on the second region.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: November 21, 2023
    Assignee: Lam Research Corporation
    Inventors: Kashish Sharma, Taeseung Kim, Samantha Tan, Dennis M. Hausmann
  • Patent number: 11450513
    Abstract: Etching a refractory metal or other high surface binding energy material on a substrate can maintain or increase the smoothness of the metal/high EO surface, in some cases produce extreme smoothing. A substrate having an exposed refractory metal/high EO surface is provided. The refractory metal/high EO surface is exposed to a modification gas to modify the surface and form a modified refractory metal/high EO surface. The modified refractory metal/high EO surface is exposed to an energetic particle to preferentially remove the modified refractory metal/high EO surface relative to an underlying unmodified refractory metal/high EO surface such that the exposed refractory metal/high EO surface after removing the modified refractory metal/high EO surface is as smooth or smoother than the substrate surface before exposing the substrate surface to the modification gas.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 20, 2022
    Assignee: Lam Research Corporation
    Inventors: Wenbing Yang, Tamal Mukherjee, Mohand Brouri, Samantha Tan, Yang Pan, Keren Jacobs Kanarik
  • Patent number: 11257674
    Abstract: Methods and apparatuses for performing cycles of aspect ratio dependent deposition and aspect ratio independent etching on lithographically patterned substrates are described herein. Methods are suitable for reducing variation of feature depths and/or aspect ratios between features formed and partially formed by lithography, some partially formed features being partially formed due to stochastic effects. Methods and apparatuses are suitable for processing a substrate having a photoresist after extreme ultraviolet lithography. Some methods involve cycles of deposition by plasma enhanced chemical vapor deposition and directional etching by atomic layer etching.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 22, 2022
    Assignee: Lam Research Corporation
    Inventors: Nader Shamma, Richard Wise, Jengyi Yu, Samantha Tan
  • Publication number: 20210305059
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Application
    Filed: June 15, 2021
    Publication date: September 30, 2021
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-Tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Patent number: 11069535
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: July 20, 2021
    Assignee: Lam Research Corporation
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-Tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Patent number: 11062897
    Abstract: Methods and apparatuses for etching metal-doped carbon-containing materials are provided herein. Etching methods include using a mixture of an etching gas suitable for etching the carbon component of the metal-doped carbon-containing material and an additive gas suitable for etching the metal component of the metal-doped carbon-containing material and igniting a plasma to selectively remove metal-doped carbon-containing materials relative to underlayers such as silicon oxide, silicon nitride, and silicon, at high temperatures. Apparatuses suitable for etching metal-doped carbon-containing materials are equipped with a high temperature movable pedestal, a plasma source, and a showerhead between a plasma generating region and the substrate.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 13, 2021
    Assignee: Lam Research Corporation
    Inventors: Yongsik Yu, David Wingto Cheung, Kirk J. Ostrowski, Nikkon Ghosh, Karthik S. Colinjivadi, Samantha Tan, Nathan Musselwhite, Mark Naoshi Kawaguchi
  • Patent number: 11011379
    Abstract: Disclosed herein are methods of doping a fin-shaped channel region of a partially fabricated 3-D transistor on a semiconductor substrate. The methods may include forming a multi-layer dopant-containing film on the substrate, forming a capping film comprising a silicon carbide material, a silicon nitride material, a silicon carbonitride material, or a combination thereof, the capping film located such that the multi-layer dopant-containing film is located in between the substrate and the capping film, and driving dopant from the dopant-containing film into the fin-shaped channel region. Multiple dopant-containing layers of the film may be formed by an atomic layer deposition process which includes adsorbing a dopant-containing film precursor such that it forms an adsorption-limited layer on the substrate and reacting adsorbed dopant-containing film precursor.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: May 18, 2021
    Assignee: Lam Research Corporation
    Inventors: Reza Arghavani, Samantha Tan, Bhadri N. Varadarajan, Adrien LaVoie, Ananda K. Banerji, Jun Qian, Shankar Swaminathan
  • Publication number: 20210098257
    Abstract: Selective deposition of a sacrificial material on a semiconductor substrate, the substrate having a surface with a plurality of regions of substrate materials having different selectivities for the sacrificial material, may be conducted such that substantial deposition of the sacrificial material occurs on a first region of the substrate surface, and no substantial deposition occurs on a second region of the substrate surface. Deposition of a non-sacrificial material may then be conducted on the substrate, such that substantial deposition of the non-sacrificial material occurs on the second region and no substantial deposition of the non-sacrificial material occurs on the first region. The sacrificial material may then be removed such that net deposition of the non-sacrificial material occurs substantially only on the second region.
    Type: Application
    Filed: January 15, 2019
    Publication date: April 1, 2021
    Inventors: Kashish Sharma, Taeseung Kim, Samantha Tan, Dennis M. Hausmann
  • Publication number: 20210005425
    Abstract: Etching a refractory metal or other high surface binding energy material on a substrate can maintain or increase the smoothness of the metal/high EO surface, in some cases produce extreme smoothing. A substrate having an exposed refractory metal/high EO surface is provided. The refractory metal/high EO surface is exposed to a modification gas to modify the surface and form a modified refractory metal/high EO surface. The modified refractory metal/high EO surface is exposed to an energetic particle to preferentially remove the modified refractory metal/high EO surface relative to an underlying unmodified refractory metal/high EO surface such that the exposed refractory metal/high EO surface after removing the modified refractory metal/high EO surface is as smooth or smoother than the substrate surface before exposing the substrate surface to the modification gas.
    Type: Application
    Filed: March 15, 2019
    Publication date: January 7, 2021
    Inventors: Wenbing Yang, Tamal Mukherjee, Mohand Brouri, Samantha Tan, Yang Pan, Keren Jacobs Kanarik
  • Publication number: 20200402801
    Abstract: Methods and apparatuses for performing cycles of aspect ratio dependent deposition and aspect ratio independent etching on lithographically patterned substrates are described herein. Methods are suitable for reducing variation of feature depths and/or aspect ratios between features formed and partially formed by lithography, some partially formed features being partially formed due to stochastic effects. Methods and apparatuses are suitable for processing a substrate having a photoresist after extreme ultraviolet lithography. Some methods involve cycles of deposition by plasma enhanced chemical vapor deposition and directional etching by atomic layer etching.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventors: Nader Shamma, Richard Wise, Jengyi Yu, Samantha Tan
  • Patent number: 10825680
    Abstract: Provided herein are methods and related apparatus that facilitate patterning by performing highly non-conformal (directional) deposition on patterned structures. The methods involve depositing films on a patterned structure, such as a hard mask. The deposition may be both substrate-selective such that the films have high etch selectivity with respect to an underlying material to be etched and pattern-selective such that the films are directionally deposited to replicate the pattern of the patterned structure. In some embodiments, the deposition is performed in the same chamber as a subsequent etch is performed. In some embodiments, the deposition may be performed in a separate chamber (e.g., a PECVD deposition chamber) that is connected to the etch chamber by a vacuum transfer chamber. The deposition may be performed prior to or at selected intermittences during at etch process. In some embodiments, the deposition involves multiple cycles of a deposition and treatment process.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: November 3, 2020
    Assignee: Lam Research Corporation
    Inventors: Alexander Kabansky, Samantha Tan, Jeffrey Marks, Yang Pan
  • Patent number: 10796912
    Abstract: Methods and apparatuses for performing cycles of aspect ratio dependent deposition and aspect ratio independent etching on lithographically patterned substrates are described herein. Methods are suitable for reducing variation of feature depths and/or aspect ratios between features formed and partially formed by lithography, some partially formed features being partially formed due to stochastic effects. Methods and apparatuses are suitable for processing a substrate having a photoresist after extreme ultraviolet lithography. Some methods involve cycles of deposition by plasma enhanced chemical vapor deposition and directional etching by atomic layer etching.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: October 6, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Nader Shamma, Richard Wise, Jengyi Yu, Samantha Tan
  • Publication number: 20200286743
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-Tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Patent number: 10763083
    Abstract: Methods and apparatus for performing high energy atomic layer etching are provided herein. Methods include providing a substrate having a material to be etched, exposing a surface of the material to a modification gas to modify the surface and form a modified surface, and exposing the modified surface to an energetic particle to preferentially remove the modified surface relative to an underlying unmodified surface where the energetic particle has an ion energy sufficient to overcome an average surface binding energy of the underlying unmodified surface. The energy of the energetic particle used is very high; in some cases, the power applied to a bias used when exposing the modified surface to the energetic particle is at least 150 eV.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: September 1, 2020
    Assignee: Lam Research Corporation
    Inventors: Wenbing Yang, Samantha Tan, Tamal Mukherjee, Keren Jacobs Kanarik, Yang Pan
  • Patent number: 10749103
    Abstract: Apparatuses for etching metal by depositing a material reactive with a metal to be etched and a halogen to form a volatile species and exposing the substrate to a halogen-containing gas and activation gas to etch the substrate are provided. Deposited materials may include silicon, germanium, titanium, carbon, tin, and combinations thereof. Apparatuses are suitable for fabricating MRAM structures and may be used to integrate ALD and ALE processes without breaking vacuum.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: August 18, 2020
    Assignee: Lam Research Corporation
    Inventors: Samantha Tan, Taeseung Kim, Wenbing Yang, Jeffrey Marks, Thorsten Lill
  • Patent number: 10741405
    Abstract: A method for patterning a substrate including multiple layers using a sulfur-based mask includes providing a substrate including a first layer and a second layer arranged on the first layer. The first layer includes a material selected from a group consisting of germanium, silicon germanium and type III/V materials. The method includes depositing a mask layer including sulfur species on sidewalls of the first layer and the second layer by exposing the substrate to a first wet chemistry. The method includes removing the mask layer on the sidewalls of the second layer while not completely removing the mask layer on the sidewalls of the first layer by exposing the substrate to a second wet chemistry. The method includes selectively etching the second layer relative to the first layer and the mask layer on the sidewalls of the first layer by exposing the substrate to a third wet chemistry.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 11, 2020
    Assignee: Lam Research Corporation
    Inventors: Daniel Peter, Samantha Tan, Reza Arghavani, Yang Pan
  • Patent number: 10727073
    Abstract: Methods and apparatuses for etching semiconductor material on substrates using atomic layer etching by chemisorption, by deposition, or by both chemisorption and deposition mechanisms in combination with oxide passivation are described herein. Methods involving atomic layer etching using a chemisorption mechanism involve exposing the semiconductor material to chlorine to chemisorb chlorine onto the substrate surface and exposing the modified surface to argon to remove the modified surface. Methods involving atomic layer etching using a deposition mechanism involve exposing the semiconductor material to a sulfur-containing gas and hydrogen to deposit and thereby modify the substrate surface and removing the modified surface.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: July 28, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Samantha Tan, Wenbing Yang, Keren Jacobs Kanarik, Thorsten Lill, Yang Pan
  • Patent number: 10685836
    Abstract: Methods of and apparatuses for processing substrates having carbon-containing material using atomic layer etch and selective deposition are provided. Methods involve exposing a carbon-containing material on a substrate to an oxidant and igniting a first plasma to modify a surface of the substrate and exposing the modified surface to a second plasma at a bias power to remove the modified surface. Methods also involve selectively depositing a second carbon-containing material onto the substrate using a precursor having a chemical formula of CxHy, where x and y are integers greater than or equal to 1. ALE and selective deposition may be performed without breaking vacuum.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: June 16, 2020
    Assignee: Lam Research Corporation
    Inventors: Samantha Tan, Jengyi Yu, Richard Wise, Nader Shamma, Yang Pan
  • Publication number: 20200161139
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 21, 2020
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill