Patents by Inventor Samarenda K. Mohanty

Samarenda K. Mohanty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9089698
    Abstract: An apparatus for in vivo electroporating a plasmid into a retina of any eye includes a first electrode with a first polarity of voltage placed in contact with a cornea of the eye, a second electrode with an opposite second voltage at least in part behind the retina, and a pulsed voltage source for providing a pulsed DC voltage with an optimized field strength amplitude, frequency, number of pulses, group repetition rate and duration of pulse and group repetition, which are optimized for transfection of the channelrhodospsin-2 (ChR2) gene into the retinal ganglion cells. An in vivo method for treating retinal ganglion cells in an eye without use of viral transfection includes the steps of nonviral in vivo delivering a channelrhodospsin-2 (ChR2) gene to target the specific (retinal ganglion) cells of a retina by intravitreous injection of plasmid DNA, electroporating the plasmid into the retina and use of image intensification device for stimulating the retinal ganglion cells with ambient lighting conditions.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: July 28, 2015
    Assignee: The Regents of the University of California
    Inventors: Samarenda K. Mohanty, Matthew Ficinski, Edward K. Wong, Michael W. Berns
  • Publication number: 20100268150
    Abstract: An apparatus for in vivo electroporating a plasmid into a retina of any eye includes a first electrode with a first polarity of voltage placed in contact with a cornea of the eye, a second electrode with an opposite second voltage at least in part behind the retina, and a pulsed voltage source for providing a pulsed DC voltage with an optimized field strength amplitude, frequency, number of pulses, group repetition rate and duration of pulse and group repetition, which are optimized for transfection of the channelrhodospsin-2 (ChR2) gene into the retinal ganglion cells. An in vivo method for treating retinal ganglion cells in an eye without use of viral transfection includes the steps of nonviral in vivo delivering a channelrhodospsin-2 (ChR2) gene to target the specific (retinal ganglion) cells of a retina by intravitreous injection of plasmid DNA, electroporating the plasmid into the retina and use of image intensification device for stimulating the retinal ganglion cells with ambient lighting conditions.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 21, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Samarenda K. Mohanty, Matthew Ficinski, Edward K. Wong
  • Publication number: 20100209963
    Abstract: The method includes the steps of generating a spatially and/or temporally localized electric field generated on the photoconductive surface, and selectively activating, guiding or porating targeted (excitable) cells at high throughput with high spatial resolution, applied for example to neurons, cardiac and muscle cells. The spatially and/or temporally localized electric field can be established using spatially and/or temporally patterning light with a diffractive element to generate the spatially localized electric field on the photoconductive surface which is sandwiched between two conductive surfaces and applying a selected voltage difference between the two conductive surfaces. The intensity of the light beam can be varied for different processes of activation, guidance or poration without causing cellular damage.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 19, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Khyati P. Dave, Samarenda K. Mohanty, Michael W. Berns