Patents by Inventor Sameer Dinkar Vartak

Sameer Dinkar Vartak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096188
    Abstract: Methods, apparatuses and systems for fire detection are disclosed herein. An example apparatus may comprise a first infrared camera comprising a first filter, a second infrared camera comprising a second filter. In some examples the apparatus comprises a controller electronically coupled to the first and second infrared cameras, the controller having processing circuitry and a memory, the controller may be configured to generate a first indicator signal using a first camera output signal corresponding to the first bandwidth and a second camera output signal corresponding to the second bandwidth, compare the first indicator signal with a first threshold, and generate a fire alarm signal using the comparison of the first indicator signal with the first threshold.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 21, 2024
    Inventor: Sameer Dinkar VARTAK
  • Patent number: 11898502
    Abstract: Combustion turbine control systems are configured to operate combustion turbine systems in partial or no load while meeting emission targets. The combustion turbine system includes a combustion turbine, an electrical generator, a combustion turbine controller, a catalyst assembly, and/or other relevant equipment. Based on given operating constraints, such as load conditions and emission regulations, the combustion turbine controller may execute corresponding actions to control certain gas concentrations and/or gas mass flows in the exhaust gases in compliance with emission regulations. The corresponding actions may include, but are not limited to: controlling fuel and/or diluent injection(s) to combustor(s) to control combustion (e.g.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 13, 2024
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Adnan Fareed Zafar, Sameer Dinkar Vartak, Arun Kumar Sridharan, Jose Apolonio Burciaga-Santos
  • Patent number: 11859817
    Abstract: A system and method of igniting a coal air-fuel mixture, including a burner having a burner tube operable to carry a flowing mixture of fuel and air to a furnace for combustion therein and a first flow directing device disposed within the tube, operable to direct a first portion of the flowing fuel and air mixture to a location in the burner tube. The system also includes a laser igniter within the burner tube, the laser igniter including a laser tube having a first end with a laser light input and a second end with a light output, and a laser light source operably coupled to the laser light input. The laser light source, including a laser. The laser ignitor directing photons from the light output at the location in the burner tube to ignite at least a part of the first portion of the fuel.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: January 2, 2024
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sameer Dinkar Vartak, Sreenivasa Rao Gubba, Kamesh Lakshmi Narayanan, Arun Kumar Sridharan, Ankur Maheshwari, Dragisa Ristic, Moorthi Subramaniyan
  • Patent number: 11492903
    Abstract: A system includes a downhole tool having a housing and a passage extending through the housing, where the passage includes an inlet configured to receive a flow of a wellbore fluid and an outlet configured to discharge the flow of the wellbore fluid. The downhole tool includes a heating element configured to heat the flow of the wellbore fluid and to enable the flow of the wellbore fluid to transition to a single-phase fluid flow within the passage. The downhole tool includes a phase composition sensor positioned adjacent the passage and configured to provide feedback indicative of formation of the single-phase fluid flow. The system includes a controller configured to monitor a power consumption of the heating element and to determine an enthalpy of the wellbore fluid based in part on the power consumption and the feedback from the phase composition sensor.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 8, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: William Albert Challener, Emad Andarawis Andarawis, David Milford Shaddock, Sameer Dinkar Vartak
  • Publication number: 20220195948
    Abstract: Combustion turbine control systems are configured to operate combustion turbine systems in partial or no load while meeting emission targets. The combustion turbine system includes a combustion turbine, an electrical generator, a combustion turbine controller, a catalyst assembly, and/or other relevant equipment. Based on given operating constraints, such as load conditions and emission regulations, the combustion turbine controller may execute corresponding actions to control certain gas concentrations and/or gas mass flows in the exhaust gases in compliance with emission regulations. The corresponding actions may include, but are not limited to: controlling fuel and/or diluent injection(s) to combustor(s) to control combustion (e.g.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Inventors: Adnan Fareed Zafar, Sameer Dinkar Vartak, Arun Kumar Sridharan, Jose Apolonio Burciaga-Santos
  • Publication number: 20220178539
    Abstract: A system and method of igniting a coal air-fuel mixture, including a burner having a burner tube operable to carry a flowing mixture of fuel and air to a furnace for combustion therein and a first flow directing device disposed within the tube, operable to direct a first portion of the flowing fuel and air mixture to a location in the burner tube. The system also includes a laser igniter within the burner tube, the laser igniter including a laser tube having a first end with a laser light input and a second end with a light output, and a laser light source operably coupled to the laser light input. The laser light source, including a laser. The laser ignitor directing photons from the light output at the location in the burner tube to ignite at least a part of the first portion of the fuel.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: SAMEER DINKAR VARTAK, SREENIVASA RAO GUBBA, KAMESH LAKSHMI NARAYANAN, ARUN KUMAR SRIDHARAN, ANKUR MAHESHWARI, DRAGISA RISTIC, MOORTHI SUBRAMANIYAN
  • Publication number: 20210108505
    Abstract: A system includes a downhole tool having a housing and a passage extending through the housing, where the passage includes an inlet configured to receive a flow of a wellbore fluid and an outlet configured to discharge the flow of the wellbore fluid. The downhole tool includes a heating element configured to heat the flow of the wellbore fluid and to enable the flow of the wellbore fluid to transition to a single-phase fluid flow within the passage. The downhole tool includes a phase composition sensor positioned adjacent the passage and configured to provide feedback indicative of formation of the single-phase fluid flow. The system includes a controller configured to monitor a power consumption of the heating element and to determine an enthalpy of the wellbore fluid based in part on the power consumption and the feedback from the phase composition sensor.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 15, 2021
    Inventors: William Albert Challener, Emad Andarawis Andarawis, David Milford Shaddock, Sameer Dinkar Vartak
  • Patent number: 10481002
    Abstract: A system for detecting an array of samples having detectable samples and at least one reference sample is provided. The system comprises an electromagnetic radiation source, a sensing surface comprising a plurality of sample fields, wherein the plurality of sample fields comprise at least one reference field, a phase difference generator configured to introduce differences in pathlengths of one or more samples in the array of samples, and an imaging spectrometer configured to image one or more samples in the array of samples.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 19, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Masako Yamada, Sandip Maity, Sameer Dinkar Vartak, Rajesh Langoju, Abhijit Patil
  • Patent number: 10060796
    Abstract: A method for correcting frequency offset in a dual comb spectroscopy system is provided. The method includes causing a first laser (L1) generator to transmit L1 pulses at a repetition rate of a first frequency and causing a second laser (L2) generator to transmit L2 pulses at a repetition rate of a second frequency. The method also includes interrogating a reference material using a combination of the L1 pulses and the L2 pulses and capturing reference cell pulses. The method further includes interrogating a material of interest using the L1 pulses and capturing material of interest pulses. The method includes determining a frequency jitter based on the captured reference cell pulses and the combination of the captured material of interest pulses and the L2 pulses.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: August 28, 2018
    Assignee: MORPHO DETECTION, LLC
    Inventors: Anish Bekal, Sameer Dinkar Vartak, Rachit Sharma
  • Publication number: 20170307443
    Abstract: A method for correcting frequency offset in a dual comb spectroscopy system is provided. The method includes causing a first laser (L1) generator to transmit L1 pulses at a repetition rate of a first frequency and causing a second laser (L2) generator to transmit L2 pulses at a repetition rate of a second frequency. The method also includes interrogating a reference material using a combination of the L1 pulses and the L2 pulses and capturing reference cell pulses. The method further includes interrogating a material of interest using the L1 pulses and capturing material of interest pulses. The method includes determining a frequency jitter based on the captured reference cell pulses and the combination of the captured material of interest pulses and the L2 pulses.
    Type: Application
    Filed: April 25, 2016
    Publication date: October 26, 2017
    Inventors: Anish Bekal, Sameer Dinkar Vartak, Rachit Sharma
  • Patent number: 9759798
    Abstract: A calibration method for enhancing a measurement accuracy of one or more voltage sensing devices in presence of a plurality of conductors is provided. The method includes operatively coupling at least one voltage sensing device of the one or more voltage sensing devices to a respective conductor of the plurality of conductors and determining a sensed voltage value of the respective conductor using the at least one voltage sensing device The method further includes determining a calibration matrix having cross-coupling factors representative of cross-coupling between an antenna of the at least one voltage sensing device and other conductors of the plurality of conductors and determining a corrected voltage value of the respective conductor by deducting at least in part contributions of the cross-coupling from the sensed voltage value of the respective conductor using the calibration matrix.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: September 12, 2017
    Assignee: General Electric Company
    Inventors: Amol Rajaram Kolwalkar, Sameer Dinkar Vartak, Arun Kumar Raghunathan, Abhijeet Arvind Kulkarni, Charles Brendan O'Sullivan
  • Patent number: 9678115
    Abstract: A contactless voltage sensing device configured to measure a voltage value of a conductor is provided. The contactless voltage sensing device includes a first impedance element having a first impedance, where the first impedance element is configured to be operatively coupled to the conductor. Further, the contactless voltage sensing device includes an antenna operatively coupled to the first impedance element, a second impedance element having a second impedance, where the second impedance element is formed in part by the antenna and a parasitic impedance element, and where the parasitic impedance element includes a parasitic impedance, and measurement and communication circuitry coupled to the first impedance element to measure the voltage value of the conductor.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: June 13, 2017
    Assignee: General Electric Company
    Inventors: Arun Kumar Raghunathan, Amol Rajaram Kolwalkar, Sameer Dinkar Vartak, Abhijeet Arvind Kulkarni, Charles Brendan O'Sullivan
  • Patent number: 9568416
    Abstract: A multimode detection system for detecting one or more samples is provided. The detection system comprises an electromagnetic radiation source, a reference arm, and a sample arm comprising a sensing substrate having a plurality of sample fields, wherein the sample fields are configured to receive the one or more samples. The system further comprises a phase difference generator configured to introduce pathlength differences in the reference arm, sample arm, or both, a spatial light modulator operatively coupled to the reference arm, sample arm, or both, wherein the spatial light modulator is configured to modulate incident radiation, resultant radiation, or both in the reference arm, sample arm, or both, and an imaging spectrometer configured to discriminate between two or more spatially separated sample en two or more spatially separated sample fields.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: February 14, 2017
    Assignee: General Electric Company
    Inventors: Sameer Dinkar Vartak, Sandip Maity, Rajesh Veera Venkata Lakshmi Langoju, Abhijit Vishwas Patil
  • Publication number: 20150331079
    Abstract: A calibration method for enhancing a measurement accuracy of one or more voltage sensing devices in presence of a plurality of conductors is provided. The method includes operatively coupling at least one voltage sensing device of the one or more voltage sensing devices to a respective conductor of the plurality of conductors and determining a sensed voltage value of the respective conductor using the at least one voltage sensing device The method further includes determining a calibration matrix having cross-coupling factors representative of cross-coupling between an antenna of the at least one voltage sensing device and other conductors of the plurality of conductors and determining a corrected voltage value of the respective conductor by deducting at least in part contributions of the cross-coupling from the sensed voltage value of the respective conductor using the calibration matrix.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 19, 2015
    Applicant: General Electric Company
    Inventors: Amol Rajaram Kolwalkar, Sameer Dinkar Vartak, Arun Kumar Raghunathan, Abhijeet Arvind Kulkarni, Charles Brendan O'Sullivan
  • Publication number: 20150331017
    Abstract: A contactless voltage sensing device configured to measure a voltage value of a conductor is provided. The contactless voltage sensing device includes a first impedance element having a first impedance, where the first impedance element is configured to be operatively coupled to the conductor. Further, the contactless voltage sensing device includes an antenna operatively coupled to the first impedance element, a second impedance element having a second impedance, where the second impedance element is formed in part by the antenna and a parasitic impedance element, and where the parasitic impedance element includes a parasitic impedance, and measurement and communication circuitry coupled to the first impedance element to measure the voltage value of the conductor.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 19, 2015
    Applicant: General Electric Company
    Inventors: Arun Kumar Raghunathan, Amol Rajaram Kolwalkar, Sameer Dinkar Vartak, Abhijeet Arvind Kulkarni, Charles Brendan O'Sullivan
  • Patent number: 9170129
    Abstract: A system for sensing the position of a movable object includes a polarization maintaining fiber configured to receive light from a light source; an optical system configured to rotate an angle of polarization of the light by a first predetermined angle; a low birefringence fiber connected to the optical system at a first end and having a mirror connected to a second end configured to reflect the light and rotate the angle of polarization at a second predetermined angle, the second end being configured to overlap a magnetic field of the a magnet attached to the object. The angle of polarization is rotated to a third predetermined angle proportional to at least one of the strength of the magnetic field and an amount of the overlap. The optical system is configured to decompose the third predetermined angle into a first component and a second component. A detector is configured to detect a differential between the first and second components indicative of the amount of the overlap.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 27, 2015
    Assignee: General Electric Company
    Inventors: Sachin Narahari Dekate, Glen Peter Kose, Aaron Jay Knobloch, Boon Kwee Lee, Sameer Dinkar Vartak, Seema Somani
  • Publication number: 20150108335
    Abstract: A system for sensing the position of a movable object includes a polarization maintaining fiber configured to receive light from a light source; an optical system configured to rotate an angle of polarization of the light by a first predetermined angle; a low birefringence fiber connected to the optical system at a first end and having a mirror connected to a second end configured to reflect the light and rotate the angle of polarization at a second predetermined angle, the second end being configured to overlap a magnetic field of the a magnet attached to the object. The angle of polarization is rotated to a third predetermined angle proportional to at least one of the strength of the magnetic field and an amount of the overlap. The optical system is configured to decompose the third predetermined angle into a first component and a second component. A detector is configured to detect a differential between the first and second components indicative of the amount of the overlap.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sachin Narahari Dekate, Glen Peter Kose, Aaron Jay Knobloch, Boon Kwee Lee, Sameer Dinkar Vartak, Seema Somani
  • Patent number: 8792102
    Abstract: A detection system for a two-dimensional (2D) array is provided. The detection system comprises an electromagnetic radiation source, a phase difference generator, a detection surface having a plurality of sample fields that can receive samples, and an imaging spectrometer configured to discriminate between two or more spatially separated points.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventors: Abhijit Vishwas Patil, Sandip Maity, Veera Venkata Lakshmi Rajesh Langoju, Anusha Rammohan, Sameer Dinkar Vartak, Umakant Damodar Rapol
  • Publication number: 20140185056
    Abstract: A system for sensing the position of a movable object includes a polarization maintaining fiber configured to receive light from a light source; an optical system configured to rotate an angle of polarization of the light by a first predetermined angle; a low birefringence fiber connected to the optical system at a first end and having a mirror connected to a second end configured to reflect the light and rotate the angle of polarization at a second predetermined angle, the second end being configured to overlap a magnetic field of the a magnet attached to the object. The angle of polarization is rotated to a third predetermined angle proportional to at least one of the strength of the magnetic field and an amount of the overlap. The optical system is configured to decompose the third predetermined angle into a first component and a second component. A detector is configured to detect a differential between the first and second components indicative of the amount of the overlap.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sachin Narahari Dekate, Glen Peter Koste, Aaron Jay Knobloch, Boon Kwee Lee, Sameer Dinkar Vartak, Seema Somani
  • Publication number: 20130165329
    Abstract: A multimode detection system for detecting one or more samples is provided. The detection system comprises an electromagnetic radiation source, a reference arm, and a sample arm comprising a sensing substrate having a plurality of sample fields, wherein the sample fields are configured to receive the one or more samples. The system further comprises a phase difference generator configured to introduce pathlength differences in the reference arm, sample arm, or both, a spatial light modulator operatively coupled to the reference arm, sample arm, or both, wherein the spatial light modulator is configured to modulate incident radiation, resultant radiation, or both in the reference arm, sample arm, or both, and an imaging spectrometer configured to discriminate between two or more spatially separated sample en two or more spatially separated sample fields.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sameer Dinkar Vartak, Sandip Maity, Rajesh Veera Venkata Lakshmi Langoju, Abhijit Vishwas Patil